
Abstract

The braneworld description of the universe considers our 4-dimensional spacetime as a membrane embedded in

a higher dimensional warpedbulk. Matter is confined to the brane, however the propagation of the gravitational

field in more than three dimensions changes the gravitational effects on the brane from those dictated by Einstein

gravity. I shall introduce briefly the simple Randall-Sundrum brane model setup, and discuss a simple metric

solution. Following this, I will discuss the motivations for Brans-Dicke theory which will provide a starting

point for Chapter 2, in which this theory (with a conformal scalar field) will be further analysed. After this

brief primer on Brans-Dicke theory, I shall allude to examples in the literature on black hole metric solutions

- the Beckenstein solution via the conformal Einstein scalar equations, and the branelike approach solution by

McFaddon and Turok. I shall then draw attention to a link between the Randall-Sundrum 2-brane setup and

Brans-Dicke gravity by the work of Takeshi Chiba.

In the second section, I start with a four-dimensional Brans-Dicke action with a scalar field ansatz. After

proving the conformal invariance of the theory, I will find the field equations for this theory. Completing this, a

Schwarzschild-like solution for the metric and conformal scalar field will be found. This solution has geometry

equivalent that of an extremal Reissner Nordstrom spacetime.

The third section attempts to test the theory (and compare it to conventional Einstein gravity) by considering

the trajectories of null geodesics. Starting from the geodesic equation, the equations of motion for a photon

in a static isotropic black hole spacetime will be found. Using this, the expression for the solution to the

unbound orbit scenario will be derived. This leads directly to the deflection angle integral. The integral is in

general elliptical and cannot be solved explicitly. Thus, we follow the treatment prescribed by Bozza in finding

strong field limit solutions both for the Schwarzschild metric and the previously derived conformal Brans-Dicke

metric. These solutions will be used to check the accuracy of the numerical evaluations of the deflection angle.

Plots of the deflection angles and some examples of photon trajectories in high proximity to black holes will be

presented. I will then discuss the lensing applications in both spacetimes, and attempt to put a lower bound on

the telescope resolution required to observe the difference between the two spacetimes.
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Chapter 1

Initial motivations

1.1 Randall-Sundrum branes

The Randall-Sundrum brane model is arguably the barest brane model type, with matterless branes. The brane

itself however posessses a tension which induces a gravitational field. We denote this energy density per unit

volume or tension asσ(1.0). The action for this model contains 5-dimensional Einstein-Hilbert terms (including

a cosmological constant term), in addition, there is a four dimensional term which effects a gravity due to the

brane tension. The action [1] is

SRS = − 1

16πG(5)

∫
d4xdz

√
−g(5)R(5) − Λ

∫
d4xdz

√
−g(5) − σ

∫
d4x
√
−g(4) (1.1)

Since we expect no curvature on the brane (since there is no matter on the brane), we require a condition on

the cosmological constent to ensure four dimensional flatness. This enforces a condition on the cosmological

constant, requiring a negative cosmological constant [3], related to the tension via

Λ = −4π

3
G(5)σ

2 (1.2)

This condition coresponds to a four dimensinally flat solution with form

ds2 = a2 (z) ηµνdx
µdxν − dz2 (1.3)

wherea is thewarp factorwhich effectively changes the four dimensional curvature as a function of distance

in thezdirection. In order to ensure pure minkowskian curvature on the brane, we ’place’ the brane at a certain

zbr such that the warp factor is unity at z = zbr. This warp factor has the form

a (z) = e−k|z| (1.4)

with

k =
4π

3
G(5)σ (1.5)

The brane is therefore located atz = 0.To ensure (1.3) is an allowed solution in this theory, and to prove that

the warp factor is in fact given by (1.4), we substitute (1.3) into the Einstein Field Equations (which must hold

since the action to this theory contains an Einstein-Hilbert consideration). The Einstein tensor is

Gµν ≡ Rµν −
1

2
gµνR = 3

(
a′2 + aa′′

)
(1.6a)
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Gzµ = 0 (1.6b)

Gzz = 6

(
a′

a

)2

(1.6c)

Now the Einstein equations here are equal to

Gµν = 8πG(5)Λgµν + 8πG(5)σgµνδ (z) (1.7a)

Gzµ = 0 (1.7b)

Gzz = 8πG(5)Λgzz (1.7c)

By substituting (1.4) into the above equations, it is a straightforward calculation to show that the the field

equations are satisfied provided (1.2) holds true and that the warp strength is given by (1.5). The brane here is

situated atz= 0, the hypersurface with minkowskian metric. There is an alternative Randall-Sundrum scenario,

which still has solution form (1.3). This approach makes the extra dimension compact by introducing a two-

brane setup, one with a positive tension situated atz = 0, the other has negative tension, and is situated atz = zc.

This theory is usually referred to as RS1. The RS2 theory is similar, with one brane placed infinitely far away

from the first.

1.2 Brans-Dicke Theory

The Brans-Dicke theory of gravity was presented in 1961 as an alternative to Einstein gravity. Einstein gravity

describes a tensor field. Brans-Dicke theory contains, in addition to this tensor field, a scalar field which couples

to matter. This theory was originally presented as a possible resolution to Mach’s principle. Mach’s principle

perportes that the motion or possible rest of a body has to be defined in relation to a kind ofabsolute space

andcannotbe defined in terms ofrelativemotion to that of other bodies. The problem here is of course, what

exactly does one mean byabsolute space. What are the possible features of such?

Consider the Newton bucket argument. We fill a bucket with water and place it in some kind of uniform

(locally, at least) gravitational field. If one spins the bucket, the water inside will (viscosity and time allowing)

assume a parabolic shape due to the introduction of a centrifugal force. However were one to somehow rotate

the surrounding laboratory, Mach would have argued, the physics should remain unchanged, and once again,

the water would assume the parabolic shape. Mach contends that the only meaningful motion is that relative to

the rest of the matter in the universe, and that, [5]”the inertial reaction experienced in a laboratory accelerated

relative to the distant matter of the universe may be interpreted equivalently as a gravitational force acting on

a fixed laboratory due to the presence of distant accelerated matter.”This absolute spacetherefore, refers to

distant matter in the universe. Einstein gravity does not take this rather strict Machi(velli?)an decree on inertia

into consideration. Brans and Dicke argue that a possible theory of gravity which takes Mach’s principle into

account would require a non-constant gravitational ’constant’. It would vary with space, and (very loosely)

depend on the ratio of a bodies mass to its distance from that particular point in space. Thus, the scalar field

concept was introduced to conventional Einstein gravity. The inertial mass of a body should depend somehow

on the particles interaction with this scalar field.

So how would this approach change the equations? The Einstein-Hilbert action with a term for the matter

lagrangian (i.e. a term which provides the inclusion of other fields into the theory, like electromagnetism) has
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the form [6]

S = k

∫
d4x
√
−g (R + LM) (1.8)

Here,

k =
c4

16πG
(1.9)

R is the Ricci scalar, and Lmis the matter lagrangian. The modification that Brans-Dicke prescribes is as follows.

We letφ ≈ 1/G- be the scalar field which depends on the four-coordinates, and simply associate it with the

Ricci scalar term, as opposed to the constant term. The second term is simply the lagrangian density of the

scalar field, with an additionalψ- in the denominator to ensure the nondimensionality of the constantω. Thus

we have

S = k

∫
d4x
√
−g (ψR− ω

∂aφ∂
aψ

ψ
+ LM) (1.10)

with

k =
c4

16π
(1.11)

Upon variation with respect to the metric tensor and then with respect to the scalar field, one can obtain the

equations of motion. It is easily apparant then that asω → ∞, Brans-Dicke gravity becomes Einstein gravity

[6]. Recent measurements attempting to fix a value for the Brans-Dicke paramater give a lower bound at 40

000. In a reasonable theory, one would expect the paramater to have order of magnitude of one. These findings

weaken the strength ofclassicalBrans-Dicke models, and strengthen the position of Einstein gravity.1

1.3 Black Hole solutions in the literature

A theory can only be tested by considering the motion of test particles (mass or massless) in the spacetime. In

this regard, metric solutions to the field equations of a theory are required. Generally, these solutions are either

black-hole like - generally isotropic, with a mass centered at the origin; or they are cosmological - homogenous

and isotropic. We aim to somehow distinguish Einstein gravity from alternative theories. In this text, we shall

seek a manifestation of these deviations by considering the way light is bent when it passes in high proximity

to a very large mass. The solutions that we require are therefore of the blackhole type.

The McFaddon and Turok approach considers tensionless branes with metric Ansatz [8]

ds2
5 = gµν(x)dx

µdxν + Φ(x)dY 2 (1.12)

The coefficient to the 5th component term is the Radion. Effectively, it is a measure of thesizeof the extra

dimension as a function of the four-coordinates. Note that in this theory, the bulk warp factor is not present.

When this metric is substituted into the five-dimensional Einstein-Hilbert action ((1.8) only with 5-D) and

integrated over the 5th dimension, an effective four dimensional action is obtained:

S = m2
P

∫
d4x
√
−gφR (1.13)

HeremP is the Planck mass. Upon finding the field equations, and assuming isotropy, the following black hole

metric results:

ds2
4 = −dt2 +

(
1− 2m

R

)−1

dr2 + r2dΩ2 (1.14)

1It is notable to mention that there are arguments against the restoration of Einstein gravity in the limitω →∞ [7]



CHAPTER 1. INITIAL MOTIVATIONS 6

with associated radion

Φ =

√
1− 2m

r
(1.15)

McFaddon and Turok then take this approach with the Randall-Sundrum two brane scenario. A warp factor is

included in the metric ansatz (1.12). The four-metric is modified to include this warp factor as a function of the

radion. In addition, the two branes have different curvature depending on sign of the tension. The changes are:

g+
µν =

1

4
(1 + Φ)2 gµν (1.16a)

g−µν =
1

4
(1− Φ)2 gµν (1.16b)

By following a similar procedure used previously, and by making various coordinate transformations, one finds

spacetime a geometry that is extremal Reissner-Nordstrom like.

ds2 = −
(

1− M

r

)2

dt2 +

(
1− M

r

)−2

dr2 + r2dΩ2 (1.17)

This metric is a solution to the standard Einstein field equations when the black hole has not only a mass, but a

charge. It is this solution which is of particular interest in this project, for we shall derive a metric geometrically

equivalent, only via a completely different starting point. While McFaddon and Turok use the Randall-Sundrum

scenario to derive this effective 4-dimensional metric, there are other theories to which this metric is a solution.

In a different approach by Beckenstein [9], an argument for a metric geometrically identical to (1.17) is pre-

sented, only in a completley different theory. Beckenstein’s solution comes from the weyl invariant Einstein

scalar equations.

1.4 The Chiba connection

Of course, the simple fact that the same metric is solution to different theories under different simplifications

is of little consequence with regard to the underlying fundamental simularities that these different theories

may share. No powerful connection at this level can be made. However, work done by T. Chiba [12] finds

a link between the Randall-Sundrum two brane scenario, and that of Brans-Dicke gravity at the action level.

Starting with the action for the RS two-brane setup (a modification of (1.1)), with similar constraints on the

consmological constant and the brane tensions, a 5-dimensional metric ansatz with warp factorand effective

radion is inserted into this action.

S = 24x

∫ r

c
0dφ
√
−g5

[
M3

2
R5 − 2Λ

]
− σ+

∫
d4x
√
−g+ − σ−

∫
d4x
√
−g− (1.18)

The metric is:

ds2 = e−2kT (x)|z|ḡµν(x)dx
µdxν + T (x)2dx2 (1.19)

where ḡµν is a general non-Minkoskian metric, and T(x) is the radion. After insertion into the RS action,

and integrating over the 5-th dimension, an effective four dimensional action on the positive tention brane is

obtained:

SChiba =

∫
d4x
√
−g
[
−M

3(1− e−2krcT (x))

2k
R + 3kr2

cM
3e−2krcT (x)(∇T (x))2

]
(1.20)
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hererc is the postition of the positive tension brane in the 5th dimension. If we make the identifications1
K

= M3

k
,

K = 8πGN , and identifying the combination
√

(6)e−krcT (x) with a scalar fieldψ(x), we get

S =
1

2K

∫
d4x
√
−g
[
−
(

1− Ψ2

6

)
R + gµνΨ,µΨ,ν

]
(1.21)

The effective four dimensional action on the positive brane in the Randall-Sundrum model is therefore like, and

tells us that on the brane the gravitational effects have a Brans-Dicke form. We shall continue to analyse this

action.



Chapter 2

Finding a black hole metric solution

2.1 A conformal Brans-Dicke action and associated field equations

Consider as ansatz a Brans-Diche scalar-tensor theory with a conformally coupled scalar field; the action for

this theory:

S =
1

2K

∫
d4x
√
−g
[
−
(

1− Ψ2

6

)
R + gµνΨ,µΨ,ν

]
(2.1)

with

k = 8π GN (2.2)

Before attempting to find the equations of motion, we shall prove that the above action is indeed invariant under

conformal transformations. The conformal transformation is

gµν → g̃µν = Ω−2gµν (2.3)

WhereΩ is a function of the four-coordinates. The Ricci tensor transforms like:

R→ R̃ = Ω2

[
R + 6gαβ (ln Ω);α;β − 6

gαβ

Ω2
Ω;αΩ;β

]
(2.4)

In addition, we require the scalar field to transform like aconformalscalar field:

ψ → ψ̃ = Ωψ (2.5)

The action under this transformation is (we ignore the first term - effectively the Einstein-Hilbert contribution

to this action which is certainly conformally invariant).

S̃ =

∫
d4x
√
−g

(
ψ̃2

6
R̃ + g̃µνψ̃,µψ̃,ν

)
(2.6)

Sunstituting (2.3), (2.4) and (2.5) into (2.6) we get

S̃ =

∫
d4x
√
−gΩ−4

{
ψ2

6
Ω4

[
R + 6

(
gαβ Ω,α

Ω

)
;β

− 6
αβ

Ω2
Ω, αΩ,β

]
+ Ω2gµν (Ωψ),µ (Ωψ),ν

}
(2.7)

=

∫
d4x
√
−g

{
ψ2

6
R + ψ2

(
gαβ Ω,α

Ω

)
;β

− ψ2 g
αβ

Ω2
Ω,αΩ,β + gµν

[
ψ,µψ,ν + 2ψψ,µ

Ω,ν

Ω
+ ψ2 Ω,µΩ,ν

Ω2

]}
(2.8)

8
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Simplifying further:

S̃ =

∫
d4x
√
−g

[
ψ2

6
R + gµνψ,µψ,ν +

(
ψ2gαβ Ω,α

Ω

)
;β

]
= S (2.9)

The third term will give no contribution to the equations of motion because it is a surface term - so will vanish

upon integration. The action (2.1) is therefore conformally invariant. We will now proceed to find the field

equations. Two equations of motion will be obtained, the first from the variation of (2.1) with respect to the

conformal scalar, the second with respect to the metric tensor. Variating with respect to the scalar field:

δΨS =
1

K

∫
d4x
√
−g
[
Ψ

6
R− (gµνΨ,ν);µ

]
δΨ (2.10)

Requiring

δS = 0, (2.11)

the relationship between the metric and the scalar field is obtained:

(gµνΨ,ν); µ =
Ψ

6
R (2.12)

And variating with respect to the metric tensor gives

δgS =
1

2K

∫
d4x
√
−g

[(
1− Ψ2

6

)(
Rµν −

gµν

2
R
)

+

(
1− Ψ2

6

)
;µ;ν

− gαβ

(
1− Ψ2

6

)
;α;β

gµν

+Ψ,µΨ,ν −
gµν

2
gαβΨ,αΨ,β]δgµν (2.13)

Using (2.11), we get the matter analogue to (2.12), and let it represent a source term. This source term is a

result of taking the functional derivative ofS with respect to the metric tensor. So the source term by definition

represents the energy-momentum tensor.

kT µν =

(
1− Ψ2

6

)(
Rµν −

gµν

2
R
)
−
(

1− Ψ2

6

)
;µ;ν

+ gαβgµν

(
1− Ψ2

6

)
;α;β

+

−Ψ,µΨ,ν +
gµν

2
gαβΨ,αΨ,β (2.14)

Taking derivatives and noting that the covariant derivative of a scalar is simply reduces to the gradient,

kT µν =

(
1− Ψ2

6

)(
Rµν −

gµν

2
R
)
− gαβgµν

Ψ

3
Ψ,α;β +

gµν

6

αβ

Ψ,αΨ,β +
Ψ

3
Ψ,µ;ν −

2

3
Ψ,µΨ,ν (2.15)

Taking the trace, we find

−R
(

1− Ψ2

6

)
−ΨgαβΨ;α;β = kT µ

µ (2.16)

Now using our first equation of motion (2.12), and expanding the covariant derivative, recalling that the covari-

ant derivative of the metric tensor is zero in every frame; we substitute into 2.16 and obtain

R = −kT µ
µ (2.17)

A most useful metric solution for this spacetime is one which can be compared with a known solution to the

Einstein field equations. The Schwarzschild metric is a spherically symmetric, static and isotropic solution to
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the Einstein field equations inemptyspace. By restricting our solution to be of this type, we aim to obtain a

Schwarzschild analogue to our conformal Brans-Dicke theory. The energy-momentum tensor is zero for such

an empty spacetime, givingR = 0 and reducing the equations of motion to

(gµνΨ,ν);µ
= 0 (2.18)

and (
1− Ψ2

6

)(
Rµν −

gµν

2
R
)
− gαβgµν

Ψ

3
Ψ,α;β +

gµν

6

αβ

Ψ,αΨ,β +
Ψ

3
Ψ,µ;ν −

2

3
Ψ,µΨ,ν = 0 (2.19)

An isotropic metric, as a function of the radial coordinate only, with the angular dependence equivalent to a

2-sphere metric has the general form

ds2 = eA(r)dt2 − eB(r)dr2 − r2
(
dθ2 + sin2 θdφ2

)
(2.20)

We can quickly find the equation of motion for the scalar field (2.18).gµνΨ,ν is a contravariant tensor, so (2.18)

is the covariant divergence of a contravariant tensor. The covariant divergence of a contravariant tensorV can

be shown [6] to be equal to:

V µ
;µ =

1
√
g

∂

∂xµ

√
gV µ (2.21)

where g =δµνg
µν . This gives for (2.18)

1

e
A+B

2 r2 sin θ

[
−e

A−B
2 r2 sin θψ′

]
,r

= 0 (2.22)

Giving

r2e
A−B

2 ψ′ = k (2.23)

To find the solution for the scalar field as a function of the radial coordinate, we require the solutions to the

metric coefficientsA(r) andB(r). We shall find these by solving the second field equation (2.19). Using the

relation:

Ψ;µ;ν = Ψ,µ;ν = Ψ,µ,ν −
∂Ψ

∂r
Γr

µν (2.24)

we are able to express the covariant derivatives in terms of the Christoffel symbols. In addition, the second field

equation depends on the Ricci tensor, which is defined by an index contraction over the Riemann tensor :

Rµν = Rγ
µγν = Γγ

µν,γ − Γγ
µγ,ν + Γγ

εγΓ
ε
µν − Γγ

εµΓε
νγ (2.25)

Both (2.24) and (2.25) depend on the affine connection, which can be expressed in terms of the metric tensor

Γα
βγ =

1

2
gαδ (gβδ,γ + gδγ,β − gβγ,δ) (2.26)

The nonvanishing Christoffel symbols for the metric (2.20) are

Γt
tr = Γt

rt =
A′

2
(2.27a)

Γr
tt =

A′

2
eA−B (2.27b)

Γr
rr =

B′

2
(2.27c)
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Γr
θθ = −re−B (2.27d)

Γr
φφ = −r sin2 θe−B (2.27e)

Γθ
rθ = Γθ

θr = Γφ
rφ = Γφ

φr =
1

r
(2.27f)

Γθ
φφ = − sin θ cos θ (2.27g)

Γφ
φθ = Γφ

θφ = cot θ (2.27h)

where the dash denotes the partial derivative with respect tor. The components of the Ricci tensor are:

Rtt =
1

2
eA−B

[
A′′ +

2A′

r
+
A′

2
(A′ −B′)

]
(2.28a)

Rrr =
1

2

[
−A′′ +

2B′

r
− A′

2
(A′ −B′)

]
(2.28b)

Rθθ = e−B
[r
2

(B′ − A′)− 1
]

+ 1 (2.28c)

Rφφ = sin2 θRθθ (2.28d)

Rµν = 0, µ 6= ν (2.28e)

Since both the Ricci tensor and the metric tensor are diagonal, and sinceψ = ψ (r), the second equation of

motion (2.19) has four non-trivially satisfied components. Substituting the Christoffels and the Ricci tensor, we

find four second order differential equations with unknownsψ, A andB. The t-t component:(
1− ψ2

6

)
1

2
eA−B

[
A′′ +

2A′

r
+
A′

2
(A′ −B′)

]
− 1

6
eA−Bψ′2 − ψψ′

6
A′eA−B = 0 (2.29)

The r-r component:(
1− ψ2

6

)
1

2

[
−A′′ +

2B′

r
− A′

2
(A′ −B′)

]
− 1

2
ψ′2 +

ψ

3

(
ψ′′ − ψ′

b′

2

)
= 0 (2.30)

θ − θ: (
1− ψ2

6

){
e−b
[r
2

(B′ − A′)− 1
]

+ 1
}

+
r2

6
e−B (ψ′)

2
+
ψψ′

3
re−B = 0 (2.31)

φ− φ: {(
1− ψ2

6

){
e−b
[r
2

(B′ − A′)− 1
]

+ 1
}

+
r2

6
e−B (ψ′)

2
+
ψψ′

3
re−B

}
sin2 θ = 0 (2.32)

Note that the last equation is simplysin2 θ times theθ − θ equation. We have an overdetermined system of

differential equations, and the last one gives us nothing new, so we therefore ignore it. Since we are dealing

with an empty spacetime, the Ricci scalar is 0.

R = gαβRαβ = gttRtt + grrRrr + gθθRθθ + gφφRφφ = 0 (2.33)

Writing the Ricci scalar in terms of the metric coefficients:

R = e−B

[
A′′ +

2

r
(A′ −B′) +

A′

2
(A′ −B′) 2

r2

]
− 2

r2
= 0 (2.34)
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Now taking the partial derivative of the first order differential equation for the scalar field (2.23) with respect to

r, we obtain

ψ′′ +

(
A′ −B′

2
+

2

r

)
ψ′ = 0 (2.35)

We can substitute equations (2.34) and 2.35) into the components of the field equation in order to eliminate the

second derivatives.

e−B

[(
1− ψ2

6

)(
B′

r
+
eB − 1

r2

)
− ψ′2

6
− ψψ′A′

6

]
= 0 (2.36)

e−B

[(
1− ψ2

6

)(
A′

r
+

1− eB

r2

)
− ψ′2

2
− ψψ′

3

(
A′

2
+

2

r

)]
= 0 (2.37)

e−B

[(
1− ψ2

6

)(
B′ − A′

2r
+
eB − 1

r2

)
+
ψ′2

6
+
ψψ′

3r

]
= 0 (2.38)

BecauseR = 0 , and since the ricci scalar is the trace (because of the symmetry), there is a linear dependency

in (2.38), so we discard it. We have three unknowns - two metric coefficients and the scalar field, and we have

reduced our overdetermined system to three coupled differential equations - (2.23), (2.36) and (2.37).

2.2 Finding a Schwarzschild-like solution

Recall the Schwarzschild solution has the form

ds2 =

(
1− 2GM

r

)
dt2 −

(
1− 2GM

r

)−1

dr2 − r2dΩ2 (2.39)

with dΩ2 the metric on the two-sphere, and the speed of light set to unity.

dΩ2 = dφ2 + sin2 θdφ2 (2.40)

Note that the Schwarzschild solution hasA = -B. In our search for an analogous metric in our space-time with

a conformally coupled scalar, we will enforce this on the field equations. So (2.23) becomes

ψ′ = k
e−A

r2
(2.41)

This restriction also reduces (2.36) and (2.37) to

−2

3
ψ′
[
ψ′ +

(
A′

2
+

1

r

)
ψ

]
= 0 (2.42)

This DE gives two sets of solutions, the first is the trivial solution forψ and,

A′ = −2

r
⇒ eA = e−B = 1− 2GM

r
(2.43)

The second solution to (2.42) is

ψ = q
e−A/2

r
(2.44)

Note that we now have two constants associated withψ, kandq. To find the relationship between the two, we

differentiate (2.44) and equate it with (2.41).

k
e−A

r2
= −

(
A′

2
+

1

r

)
q
e−A/2

r
(2.45)
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Which has solution

eA/2 = −k
q
− C

r
(2.46)

We require that the leading terms in the expansion of (2.43) are identical to the newtonian case. This forces

k = −q (2.47)

and

C = GM (2.48)

To find the constant q, we substitute, (2.41), (2.44), (2.47) and (2.48) in (2.43). This sets

q =
√

6GM (2.49)

Finally we have,

ds2 =

(
1− GM

r

)2

dt2 −
(

1− GM

r

)−2

dr2 − r2dΩ2 (2.50)

with associated scalar field

ψ =
√

6
GM

r −GM
(2.51)

This metric is geometrically equivalent to an extremal Reissner-Nordstrom black hole, and is of the same type as

those discussed in section 1, only derived from yet another starting point. At first glance, we note that the radius

at which the singularity occurs is atr = GM as opposed to the Schwarzschild radius ofr = 2GM. To analyse the

geometry of this manifold in more detail, we shall consider the geodesics made by null test particles (photons)

in the vicinity of a black hole. We shall investigate therefore the lensing of light in this Conformal Brans-Dicke

spacetime, and compare it with light propagating in its classic Einstein analogue - the Schwarzchild spacetime.



Chapter 3

Testing the theory - Strong lensing by black holes

3.1 Geodesics in static isotropic gravitational fields

Because I intend to show the effects of matter on both CBD and Schwarzschild null geodesics, I shall derive a

general formula for the deflection angle for photons in an isotropic spacetime. The general metric has the form

ds2 = eA(r)dt2 − eB(r)dr2 − r2dθ2 − r2 sin2 θdφ2 (3.1)

Since the metric solutions that I wish to investigate both have angular metric dependence equal to that on the

two-sphere, we do not lose generality by imposingr2 as the metric angular terms coefficients. The geodesic

equation is
d2xµ

dλ2
+ Γµ

νγ

dxν

dλ

dxγ

dλ
= 0 (3.2)

where the affine paramater on the manifold isλ. The Chrisoffel symbols for this metric have already been

calculated (2.27a)-(2.27h). Substituting these into (3.2), an equation of motion for each of the four-coordinates

is acquired:

d2r

dλ2
+
B′(r)

2

(
dr

dλ

)2

− re−B(r)

(
dθ

dλ

)2

− re−B(r) sin2 θ

(
dφ

dλ

)2

+
1

2
A′(r)eA(r)−B(r)

(
dt

dλ

)2

= 0 (3.3a)

d2θ

dλ2
+

2

r

dθ

dλ

dr

dλ
− sin θ cos θ

(
dφ

dλ

)2

= 0 (3.3b)

d2φ

dλ2
+

2

r

dφ

dλ

dr

dλ
+ cot θ

dφ

dλ

dθ

dλ
= 0 (3.3c)

d2t

dλ2
+ A′(r)

dt

dλ

dr

dλ
= 0 (3.3d)

Due to the metric isotropy, without losing generality we can confine the photon to the equatorial plane, setting

θ = π
2
. This warrants (3.3b) to be trivially satisfied. Dividing (3.3c) by dφ/dλ, and (3.3d) by dt/dλ, we find two

constants of motion:
d

dλ

(
ln
dφ

dλ
+ ln r2

)
= 0 (3.4a)

d

dλ

(
ln
dt

dλ
+ A(r)

)
= 0 (3.4b)

14
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(3.4a) yields conservation of angular momentum:

J = r2dφ

dλ
(3.5)

(3.4b) gives
dt

dλ
= e−A(r) (3.6)

Substituting (3.5), and (3.6) into (3.3a) gives the radial equation of motion as

d2r

dλ2
+B′(r)

(
dr

dλ

)2

− J2 e
−B(r)

r3
+

1

2
A(r)e−A(r)+B(r) = 0 (3.7)

Multiplying this equation with2A(r)dr/dλ:

d

dλ

[
eB(r) +

(
dr

dλ

)2

+
J2

r2
− e−A(r)

]
= 0 (3.8)

We identify this constant of motion as the energy:

−E = eB(r) +

(
dr

dλ

)2

+
J2

r2
− e−A(r) (3.9)

From (3.1), (3.5), (3.6) and (3.9) we find that

E =
ds2

dλ2
(3.10)

Since we are interested in the motion of massless particles only, the constant of proportionality between the

affine paramaterλ and proper distancesvanishes. Hence, the energy for a photon is zero. Now, by solving (3.6)

for dλ, and inserting this into (3.5) we get

r2dφ

dt
= Je−A(r) (3.11)

This is independent of the affine parameter. Similarly using (3.6) in (3.9) we find

eB(r)−2A(r)

(
dr

dt

)
+
J2

r2
− e−A(r) = 0 (3.12)

If one uses (3.11) and (3.9) to eliminate the temporal component, we have a differential equation forφ as a

function of the radial component only.

eB(r)

r4

(
dr

dφ

)2

+
1

r2
− eA(r)

J2
= 0 (3.13)

This is a seperable first order differential equation, so the solution can be written as an integral:

φ(r) =

∫ ∞

r

eB(r)/2

r2

(
eA(r)

J2
− 1

r2

)− 1
2

(3.14)

This means that given a radial distance from the black hole, its angular displacement at that radius can be found

subject to initial conditions. It isJ thatholdsthe content given by the initial conditions. Since we are interested

in the lensing applications only, we need consider only the case ofunboundorbits. We therefore assume that

the particle approaches the black hole form infinity. In this limit, the metric becomes Minkowskian, that is,

A(∞) = B(∞) = 1. The impact parameterb is (see figure 3.1)
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Figure 3.1: Basic deflection of light setup in the proximity of a large mass.

b ≈ r sin(φ− φ∞) ≈ r(φ− φ∞) (3.15)

whereφ∞ is the incident photon direction. Also, because the field is infinitly weak here, the velocity is constant,

so

−v ≈ d

dt
(r cos(φ− φ∞)) ≈ dr

dt
) (3.16)

Inserting these into (3.11) and (3.12) we findv = 1 andJ = bV 2 = b. So for photons, the impact paramater is

the angular momentum. We now have found an equation for this unbound orbit (3.14) as a function of impact

parameter. For our purposes, it is more useful to give the orbit equation as a function of the distance of closest

approachr0, rather than the impact parameter. To this end, we substituter = r0 into (3.12), and use the fact that

at this point, the rate of change of the radius with angle is 0.dr
dφ

= 0 (The photon has approached its maximum

proximity to the black hole, and will now begin its recession from the black hole.) This gives

J = r0e
−A(r)

2 (3.17)

Note that (3.14) describeshalf of the photons complete geodesic. There is a complete symmetry inφ around

r = r0. In other words, if one changes from a radial distancer0 + D to r0 − D, the deflection angle is the

same for a particularD. This implies then, that the total deflection angle, i.e. the deflection of the photon from

a straight line is

α ≡ ∆φ = 2|φ(r0)− φ∞| − π (3.18)
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For sake of accordance with the notation usually used in the literature, and indeed for the purpose of simplicity,

before proceeding to the analysis of lensing in the CBD spacetime, I shall take this oppertunity to make a slight

change to the metric coefficients, namelya(r) = eA(r) andb(r) = eB(r). Inserting (3.17) into the orbit equation

and making the notation change, we have finally for the orbit:

φ(r) = φ∞ +

∫ ∞

r

b1/2(r)

r

[(
r

r0

)2(
a(r0)

a(r)

)
− 1

]−1/2

dr (3.19)

3.2 Deflection angles for CBD and SCH

Before proceeding with the deflection angle calculations explicitly in terms of the CBD or Schwarzschild metric

coefficients, we shall find thephoton spheres. While the event horizons of the CBD and Schwarzschild black

holes arerCBD = 1 andrSch = 2 (letting GM = c = 1) , the photon sphere radii are greater. The photon sphere

is an unstable photon orbit. Any incident photon with an impact paramater such that the distance of closest

approach islessthan the photon sphere will besuckedinto the black hole, never to emerge. Because the photon

sphere is effectively infinitly thin, this orbit is unstable - no photon will stay just above or below it for long.

Those grazing the photon sphere will - because of their high proximity to the black hole, experiance maximum

deflection, possibly even circling the black hole multiple times before emerging. The photon sphere is given by

the largest solution to [15]
a′(r)

a(r)
=
c′(r)

c(r)
(3.20)

wherea(r) is the temporal metric coefficient andc(r) the angular coefficient, (for both our black hole cases,

c(r) = r2). Recall the Schwarzschild and CBD and metrics are given by (2.39) and (2.50) respectivly. The

simple photon sphere calculation givesrps = 3 andrpc = 2. The CBD photon sphere radius is therefore equal

to the Schwarzschild event horizon radius. It is not completely imprudent to at this stage remark the following:

Since the Schwarzschild photon sphere is smaller than the CBD one, we can expect the total deflection angle

for photons incident on either black hole to begreaterin the CBD case than in the Schwarzschild case. This is

due to the higher proximity that the CBD black holes allow the incident photons.

From a lensing perspective, the photon orbits (3.19) are not as useful to us as the deflection angles as a function

of the distance of closest approach. We are interested in (3.18). In terms of the metric coefficients, the total

defelction angle is:

α = 2

∫ ∞

r0

b1/2(r)

r

[(
r

r0

)2(
a(r0)

a(r)

)
− 1

]−1/2

dr − π (3.21)

In the treatment of the analysis of the above equation, I shall initially find approximations to the weak and

strong field limits for both cases using the procedure outlined by Bozza [15]. Following this, the results for the

direct evaluation of the above integral will be shown, and compared with the approximate ones.

Making the substitutionsu = 1
r
, andu = u0x, the deflection angles for the Schwarzschild and CBD cases

are given by

αSch = 2

∫ 1

0

dx√
1− x2 + rsu0 (x3 − 1)

− π (3.22a)
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αCBD = 2

∫ 1

0

dx√
(1− rcu2

0)− (x− rcu0x2)2
− π (3.22b)

wherers andrc are the event horizon radii. The Schwarzschild case has under the square root on the denominator

a cubic polynomial, while the CBD case expression is quintic. Both are irregular elliptical integrals, and cannot

be evaluated analytically. Note that both expressions are regular over the integration interval, however there it

a complex pole at the lower limit. This pole represents the asymptotic behavoir of the photon defelction as it

approaches the photon sphere. Expanding inx, and dropping higher order terms, we get an approximation for

the deflection angles for the Schwarzschild and CBD cases respectively in the weak field:

αSch ≈ 2

∫ 1

0

dx√
1− x2

[
1 +

rsu0

2

(1− x3)

1− x2

]
− π (3.23a)

αCBD ≈ 2

∫ 1

0

[
1 + rcu0

1− x3

1− x2

]
− π (3.23b)

Now sincers = 2rc, these two integrals are identical with solution

αweak = 4u0 =
4

r0
(3.24)

This result shows that in the weak field limit, the deflection angles of photons in either spacetimes are identical.

Therefore, only photons with a high enough proximity (those experiencing a strong enough field) to a black

hole will show results that will differentiate between the two spacetimes. In analyzing the strong field limits ap-

proximation to the deflection angle, we continue following the Bozza procedure. We transform the independent

variablex→ 1− x, giving

αSch = 2

∫ 1

0

dx√
(2− 3rsu0)x+ (3rsu0 − 1)x2 − rsu0x3

− π (3.25a)

αSch = 2

∫ 1

0

dx√
2(1− 2rcu0)(1− rcu0)x+ [2rcu0(1− rcu0)− (1− 2rcu0)2]x2 − 2rcu0(1− 2rcu0)x3 − (rcu0)2x4

−π

(3.25b)

These equations hold foruo < up, the divergence occurs when they are equal. Bozza seperates the integral into

two terms, one which divergesID and a regular termIR. We have thenα = ID + IR − π with

IDSch
= 2

∫ 1

0

dx√
(2− 3rsr0)x+ (3rsu0 − 1)x2

(3.26a)

IDCBD
= 2

∫ 1

0

dx√
2(1− 2rcu0)(1− rcu0)x+ [2rcu0(1− rcuo)− (1− 2rcu0)2]x2

(3.26b)

These terms diverge when the distance of closest approach is the photon sphere. Howerver, the following terms

do not:

IRSch
= 2

∫ 1

0

dx

x

 1√
1− 2x

3

− 1

 (3.27a)

IRCBD
= 2
√

2

∫ 1

0

dx

x

 1√
1− x2

2

− 1

 (3.27b)
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Evaluating these two pairs of integrals gives

IDSch
= 2 ln

(
2

1− u0

up

)
(3.28a)

IDCBD
= 2
√

2 ln

(
2

1− u0

up

)
(3.28b)

and

IRSchH
= 2 ln

[
3
(√

3− 1
)2
]

(3.29a)

IRCBD
= 2
√

2 ln

(
4

2 +
√

2

)
(3.29b)

Thus, provided the the distance of closest approach is close enough to the photon sphere, the total defelction

angles are given by

αSch = −2 ln

(
1− u0

up

)
+ 2 ln

(
6(
√

3− 1)2
)
− π (3.30a)

αCBD = −2
√

2 ln

(
1− u0

up

)
+ 2
√

2 ln

(
4
√

2

1 +
√

2

)
− π (3.30b)

3.3 Simulation results

The evaluation of (3.21) was performed in Mathematica version 4.1. The Mathematica integration algorithm

uses gaussian quadrature with adaptive stepping. The integration gave the following results for the deflection

angle:
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Figure 3.2: Deflection angle against distance of closest approach for both cases (GM = c = 1). Observe the

correct asymptotic behavior as the geodesics approach the photon sphere. The photon spheres are atr = 3 and

r = 2 for the Schwarzschild and CBD cases respectively. The horizontal lines indicate the angles for which the

photon has done 1/2 a revolution, 1 revolution etc. around the black hole.
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In order to check the strength of the integration routine, we compare it with the expressions for the strong

field limit (3.30a) and (3.30b). First the Schwarzschild case comparison:

Figure 3.3: This plot shows the relationship between the deflection angle and the distance of closest approach

for both the direct integral evaluation and the strong field limit relationship.
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Figure 3.4: The difference between the strong field limit expression and the exact numerical expression. We

expect the difference in the limit as the distance of closest approach tends to the photon sphere radius to be zero

if the integration routine is successful.

Figure 3.5: Once again, a check on the accuracy of the integration method.
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In order to fix an upper bound for the relative accuracy, wezoom into the photon sphere region by≈ 103

times.

Figure 3.6: Therelativeaccuracy of the integration routine with the strong field limit in high proximity to the

photon sphere. At this resolution, small fluctuations from the correct values are visible in the integration routine.

This places an upper bound on the relative accuracy at 1/10000.

The integration routine comparison for the CBD spacetime:
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Figure 3.7: This plot shows the deflection angles for a given distance of closest approach. (CBD)
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Figure 3.8: The difference between the strong field limit expression and the exact numerical expression. We

expect the difference in the limit as the distance of closest approach tends to the photon sphere radius to be zero

if the integration routine is successful.



CHAPTER 3. TESTING THE THEORY - STRONG LENSING BY BLACK HOLES 26

Figure 3.9: The ratio between the two methods (Should both be unity in the photon sphere limit if the integration

limit does not diverge).
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Figure 3.10: Therelativeaccuracy of the integration routine with the strong field limit in high proximity to the

photon sphere. We have zoomed in to the region just above the photon sphere. At this proximity the integration

routine’s accuracy begins to diverge. The integration is not as strong here as for the Schwarzschild case. The

relative accuracy here is about 1/1000. This can be expected considering the slightly more complex nature of

the CBD integral.
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Figure 3.11: This shows an example of the photon trajectory through space, simply the evaluation of (3.19) for a

particular impact paramater and associated distance of closest approach. Here, the distance of closest approach

of the photon in the Schwarzschild spacetime is 3.1m. The distance of closest approach of the CBD photon is

3.9m (simply chosen because this gives approximately the same impact parameter as the Schwarzschild photon).

The Schwarzschild photon is close enough to circle its black hole, while the CBD photon is simply bent by its

black hole - due to a low proximity to its own black hole. The two bold circles in this plot are the black hole

photon spheres. The larger belongs to the Schwarzschild black hole with radius r = 3m and the smaller belongs

to the CBD black hole with radius = 2m.
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Figure 3.12: An example similar to the above, only here the incident photons have lower distances of closest

approach. The CBD photon’s distance of closest approach to its black hole is 2.1m. The Schwarzschild photon

has impact paramater too low to orbit its black hole - thus, it crosses the photon sphere and is swallowed.

Since both spacetimes have only one solution to (3.20), and so only one orbit, a photon which crosses this

orbit will eventually cross the event horizon and will therefore never emerge. The reason we do not see the

photon trajectory on the above plot after it crosses the photon sphere, is because of the assumption made in the

derivation of the orbit equation. The orbit equation integrand becomes complex when the photon crosses the

photon sphere. It was assumed that the relationship between the angular position and the radial position had a

stationary point. A photon crossing the photon sphere has a monotonically decreasing radius.

3.4 Application to lensing

Leaving geometrized units behind and turning to SI units, we shall look at lensing in our own galaxy. The stars

orbiting the galactic center provide us with ideal candidates for strong lensing. We aim to distinguish the two

spacetimes from one another, and attempt to find a lower bound on the required telescope resolution.
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The most general lensing setup is as follows:

Figure 3.13: A generic lensing setup. While here the source plane is further away from the observer plane than

the lens plane is; lensing is not restricted to this. In addition, this diagram shows only the first relatavistic image.

(Essentially adistortedEinstein Ring because the source is not collinear with the observer and lens.)

α in the above diagram is the deflection angle,b is the impact parameter,β is the angular position of the

source in the absence of the lens, andθ is the angular position of the source as seen by the observer. The

diagram shows only the first image that reaches the observer. There are an infinite number of images, the higher

the image number, the lower the impact parameter and deflection angle (after subtracting2π an appropriate

number of times). After calculation of the deflection angle for a given distance of closest approach (already

done above), and given the above setup with knownr0, β, Dls andDos; we need to find the corresponding

deflection angleα.
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Using simple geometry one can show that the relationship betweenθ andα is given by [19]

tan θ =
Dls

Dos
[tan θ + tan (α− θ)] + tan β (3.31)

For smallβ, this simplifies to

θ = β +
Dls

Dos
α (3.32)

Using the abovelens equation, once we have foundα, we can findθ - our observable. We shall use as our

example the star S2 in orbit around the black hole Sagitarius A*. The distance to the Sagitarius A* is≈ 8.51kPc.

S2 has [20] an orbital period of 15.24± 0.36 years, the inclination of the orbit normal with respect to line of sight

is 131.9± 1.3 degrees, the semimajor axis has angular size 0.1226± 0.0025 arcseconds, and the eccentricity

of the orbit is 0.876± 0.0072. The simulations give the following results:

Figure 3.14: The blue curve shows the angular positions of the images from the star S2 throughout its orbit in

the absence of the black hole. The red curve shows the angular positions of the first relatavistic images from

the star throughout its orbit. Unfortunately, even at this proximity to the black hole, the Schwazschild and CBD

deflection angle cases give the same results.(Both lie on the red curve.) The asymmetry in the relatvistic images

is a consequence of the tilt in the star’s orbit. (The orbit is not flat-on.)
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3.5 Final conclusions

The Chiba connection between Randall-Sundrum branes and a conformal Brans-Dicke theory allows us to see

the manifestation of branelike features on our brane. Beginning with this link, the CBD action was variated,

giving the corresponding field equations. Using these we were able to find a black hole metric solution analagous

to the Schwarzschild metric - static and isotropic. This metric had geometry equivalent to that of an extremal

Reissner-Nordstrom spacetime. The deflection of photons by black holes in the Schwarzschild spacetime differs

from the CBD spacetime in the strong field - the weak field gives identical results. It is for this reason, that only

the observation ofextremephenomena, like the deflection of light in high proximity to a black hole would

provide a testable oppertunity to observe the black-hole like features of our universe. Upon consideration of the

null geodesics in generic spacetimes with only radial dependence on metric coefficients, an expression for the

deflection of light by black holes was obtained. This involved an integral which could not be solved analytically,

so two approaches were used. The first was a direct numerical evaluation of the integral. The second method,

valid only in the strong field limit was found following the approach outlined by Bozza. Approximate solutions

of these types were found both for the Schwarzschild spacetime and the CBD spacetime. The strong field limit

solutions were used to check the strength of the integration routine. The implementation of the routine to the

Schwarzschild case exhibited a higherrelative accuracy (10−4) than the CBD case integration (about10−3).

Both however, are well within the required accuracy range. The application of the deflection of light to lensing

was considered. The example used was the star S2 in orbit around Sgr A*, the black hole at the centre of our

galaxy. It was found that even in this case there was no observed difference between the two spacetimes for

the first relatavistic images. Thus, the required telescope resolution is certainly beyond the technology available

today. Should astronomers be able to observe with high resolution the positions of relatavistic images, we would

be provided with a strong tool for determining the nature of black holes - and thus hint at the strengths of various

theories of gravity.
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