Abstract

The braneworld description of the universe considers our 4-dimensional spacetime as a membrane embedd
a higher dimensional warpdulilk. Matter is confined to the brane, however the propagation of the gravitational
field in more than three dimensions changes the gravitational effects on the brane from those dictated by Eins
gravity. | shall introduce briefly the simple Randall-Sundrum brane model setup, and discuss a simple met
solution. Following this, | will discuss the motivations for Brans-Dicke theory which will provide a starting

point for Chapter 2, in which this theory (with a conformal scalar field) will be further analysed. After this
brief primer on Brans-Dicke theory, | shall allude to examples in the literature on black hole metric solution
- the Beckenstein solution via the conformal Einstein scalar equations, and the branelike approach solution
McFaddon and Turok. | shall then draw attention to a link between the Randall-Sundrum 2-brane setup a
Brans-Dicke gravity by the work of Takeshi Chiba.

In the second section, | start with a four-dimensional Brans-Dicke action with a scalar field ansatz. Afte
proving the conformal invariance of the theory, I will find the field equations for this theory. Completing this, &
Schwarzschild-like solution for the metric and conformal scalar field will be found. This solution has geometr
equivalent that of an extremal Reissner Nordstrom spacetime.

The third section attempts to test the theory (and compare it to conventional Einstein gravity) by consideril
the trajectories of null geodesics. Starting from the geodesic equation, the equations of motion for a phot
in a static isotropic black hole spacetime will be found. Using this, the expression for the solution to th
unbound orbit scenario will be derived. This leads directly to the deflection angle integral. The integral is i
general elliptical and cannot be solved explicitly. Thus, we follow the treatment prescribed by Bozza in findin
strong field limit solutions both for the Schwarzschild metric and the previously derived conformal Brans-Dick
metric. These solutions will be used to check the accuracy of the numerical evaluations of the deflection ang
Plots of the deflection angles and some examples of photon trajectories in high proximity to black holes will
presented. | will then discuss the lensing applications in both spacetimes, and attempt to put a lower bound
the telescope resolution required to observe the difference between the two spacetimes.
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Chapter 1

Initial motivations

1.1 Randall-Sundrum branes

The Randall-Sundrum brane model is arguably the barest brane model type, with matterless branes. The b
itself however posessses a tension which induces a gravitational field. We denote this energy density per |
volume or tension as(1.0). The action for this model contains 5-dimensional Einstein-Hilbert terms (including
a cosmological constant term), in addition, there is a four dimensional term which effects a gravity due to tl
brane tension. The action [1] is

1
Sks = / d*zdz\/—g® RO — A / d*xdzn/—g®) — o | dzy/—g® (1.1)

B 167TG(5)

Since we expect no curvature on the brane (since there is no matter on the brane), we require a conditior
the cosmological constent to ensure four dimensional flathess. This enforces a condition on the cosmolog
constant, requiring a negative cosmological constant [3], related to the tension via

4
A= -G’ (1.2)
This condition coresponds to a four dimensinally flat solution with form
ds* = a* () n,datda” — dz? (1.3)

wherea is thewarp factorwhich effectively changes the four dimensional curvature as a function of distance
in thez direction. In order to ensure pure minkowskian curvature on the brane, we 'place’ the brane at a certz
2y, Such that the warp factor is unity at z 5 zThis warp factor has the form

a(z) = e k=l (1.4)
with A
k= ?WG@)O' (1.5)

The brane is therefore locatedzat 0.To ensure (1.3) is an allowed solution in this theory, and to prove that
the warp factor is in fact given by (1.4), we substitute (1.3) into the Einstein Field Equations (which must hol
since the action to this theory contains an Einstein-Hilbert consideration). The Einstein tensor is

1
G =Ry, — §gWR =3(a” + ad”) (1.6a)
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G, =0 (1.6b)

I\ 2
G —6 (2) (L.6¢)

a
Now the Einstein equations here are equal to

Gu,j = 87TG(5)Agu,, + 87TG(5)JguV(5 (Z) (1.78.)
G =0 (1.7b)
G.. = 81G5)Ag.. (2.7¢)

By substituting (1.4) into the above equations, it is a straightforward calculation to show that the the fiel
equations are satisfied provided (1.2) holds true and that the warp strength is given by (1.5). The brane her
situated atz= 0, the hypersurface with minkowskian metric. There is an alternative Randall-Sundrum scenarit
which still has solution form (1.3). This approach makes the extra dimension compact by introducing a twi
brane setup, one with a positive tension situated=a0, the other has negative tension, and is situated-..

This theory is usually referred to as RS1. The RS2 theory is similar, with one brane placed infinitely far awe
from the first.

1.2 Brans-Dicke Theory

The Brans-Dicke theory of gravity was presented in 1961 as an alternative to Einstein gravity. Einstein gravi
describes a tensor field. Brans-Dicke theory contains, in addition to this tensor field, a scalar field which coup
to matter. This theory was originally presented as a possible resolution to Mach’s principle. Mach'’s princip
perportes that the motion or possible rest of a body has to be defined in relation to a kibsbbaite space
andcannotbe defined in terms aklative motion to that of other bodies. The problem here is of course, what
exactly does one mean lapsolute spacé/NVhat are the possible features of such?

Consider the Newton bucket argument. We fill a bucket with water and place it in some kind of uniforn
(locally, at least) gravitational field. If one spins the bucket, the water inside will (viscosity and time allowing)
assume a parabolic shape due to the introduction of a centrifugal force. However were one to somehow ro
the surrounding laboratory, Mach would have argued, the physics should remain unchanged, and once ag
the water would assume the parabolic shape. Mach contends that the only meaningful motion is that relative
the rest of the matter in the universe, and thattfig inertial reaction experienced in a laboratory accelerated
relative to the distant matter of the universe may be interpreted equivalently as a gravitational force acting c
a fixed laboratory due to the presence of distant accelerated mattés. absolute spac¢herefore, refers to
distant matter in the universe. Einstein gravity does not take this rather strict Machi(velli?)an decree on iner
into consideration. Brans and Dicke argue that a possible theory of gravity which takes Mach'’s principle int
account would require a non-constant gravitational 'constant’. It would vary with space, and (very loosely
depend on the ratio of a bodies mass to its distance from that particular point in space. Thus, the scalar fi
concept was introduced to conventional Einstein gravity. The inertial mass of a body should depend someh
on the particles interaction with this scalar field.

So how would this approach change the equations? The Einstein-Hilbert action with a term for the matt
lagrangian (i.e. a term which provides the inclusion of other fields into the theory, like electromagnetism) h:
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the form [6]

Here,

C4

k= (1.9)
167G
Ris the Ricci scalar, and,Lis the matter lagrangian. The modification that Brans-Dicke prescribes is as follows
We let¢ ~ 1/G- be the scalar field which depends on the four-coordinates, and simply associate it with th
Ricci scalar term, as opposed to the constant term. The second term is simply the lagrangian density of
scalar field, with an additionat- in the denominator to ensure the nondimensionality of the constafhus
we have

S=k / d*z/—g (YR — waad:f% + L) (1.10)

with
C4

= Ten (1.11)
Upon variation with respect to the metric tensor and then with respect to the scalar field, one can obtain t
equations of motion. It is easily apparant then thabas: oo, Brans-Dicke gravity becomes Einstein gravity
[6]. Recent measurements attempting to fix a value for the Brans-Dicke paramater give a lower bound at
000. In a reasonable theory, one would expect the paramater to have order of magnitude of one. These find
weaken the strength afassicalBrans-Dicke models, and strengthen the position of Einstein gravity.

1.3 Black Hole solutions in the literature

A theory can only be tested by considering the motion of test particles (mass or massless) in the spacetime
this regard, metric solutions to the field equations of a theory are required. Generally, these solutions are eit
black-hole like - generally isotropic, with a mass centered at the origin; or they are cosmological - homogeno
and isotropic. We aim to somehow distinguish Einstein gravity from alternative theories. In this text, we sha
seek a manifestation of these deviations by considering the way light is bent when it passes in high proxim
to a very large mass. The solutions that we require are therefore of the blackhole type.

The McFaddon and Turok approach considers tensionless branes with metric Ansatz [8]
ds: = g, (v)dztdz” + ®(z)dY™ (1.12)

The coefficient to the 5th component term is the Radion. Effectively, it is a measure sizdw the extra
dimension as a function of the four-coordinates. Note that in this theory, the bulk warp factor is not presel
When this metric is substituted into the five-dimensional Einstein-Hilbert action ((1.8) only with 5-D) and
integrated over the 5th dimension, an effective four dimensional action is obtained:

S =m3 / d*z/—goR (1.13)

Heremp is the Planck mass. Upon finding the field equations, and assuming isotropy, the following black ho

metric results:

2 —1
ds? = —d? + (1 . %) dr? + r2dQ? (1.14)

LIt is notable to mention that there are arguments against the restoration of Einstein gravity in the-limit [7]
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with associated radion
2m

b=4/1—-— (1.15)
r
McFaddon and Turok then take this approach with the Randall-Sundrum two brane scenario. A warp factor
included in the metric ansatz (1.12). The four-metric is modified to include this warp factor as a function of th
radion. In addition, the two branes have different curvature depending on sign of the tension. The changes &
(14 @) g, (1.16a)

+
g/J,I/_

N

(1—®)* g, (1.16b)

G =
By following a similar procedure used previously, and by making various coordinate transformations, one fin
spacetime a geometry that is extremal Reissner-Nordstrom like.

2 —2
ds* = — (1 — g) dt* + (1 — %) dr® + r2dQ? (1.17)
This metric is a solution to the standard Einstein field equations when the black hole has not only a mass, b
charge. Itis this solution which is of particular interest in this project, for we shall derive a metric geometricall
equivalent, only via a completely different starting point. While McFaddon and Turok use the Randall-Sundrul
scenario to derive this effective 4-dimensional metric, there are other theories to which this metric is a solutic
In a different approach by Beckenstein [9], an argument for a metric geometrically identical to (1.17) is pre
sented, only in a completley different theory. Beckenstein’s solution comes from the weyl invariant Einstei
scalar equations.

1.4 The Chiba connection

Of course, the simple fact that the same metric is solution to different theories under different simplificatior
is of little consequence with regard to the underlying fundamental simularities that these different theori
may share. No powerful connection at this level can be made. However, work done by T. Chiba [12] finc
a link between the Randall-Sundrum two brane scenario, and that of Brans-Dicke gravity at the action lev
Starting with the action for the RS two-brane setup (a modification of (1.1)), with similar constraints on th
consmological constant and the brane tensions, a 5-dimensional metric ansatz with warprfdetibective
radion is inserted into this action.

I M3
S = 24x/ odp/—gs [TR5 — 2A] — 0+/d4x\/—g+ — 0_/d4x\/—g_ (1.18)
The metric is:
ds* = e *TWIEg  (v)da"da” + T(x)*da? (1.19)

whereg,, is a general non-Minkoskian metric, and T(x) is the radion. After insertion into the RS action,
and integrating over the 5-th dimension, an effective four dimensional action on the positive tention brane

obtained:
M3 ( 1 — e—ZkTCT(x) )

o R+ 3kr2MPe 2rT@) (VT (2))? (1.20)

Schiba = /d495v —g {—
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herer. is the postition of the positive tension brane in the 5th dimension. If we make the identificéti@n%,ff,
K = 87Gy, and identifying the combinatiogy(6)e~*<"®) with a scalar field)(z), we get

2

_ 1 4 o _\Ij_ nv
S—QK/dm\/_g[ (1 6>R+g \11,;1/] (1.21)

The effective four dimensional action on the positive brane in the Randall-Sundrum model is therefore like, a
tells us that on the brane the gravitational effects have a Brans-Dicke form. We shall continue to analyse t
action.



Chapter 2

Finding a black hole metric solution

2.1 A conformal Brans-Dicke action and associated field equations

Consider as ansatz a Brans-Diche scalar-tensor theory with a conformally coupled scalar field; the action
this theory:
S = ﬁ d*x+/ —qg|— 1-— E R+ g“ \I/,M\I/J, (21)

k=81 Gy (2.2)

with

Before attempting to find the equations of motion, we shall prove that the above action is indeed invariant unc
conformal transformations. The conformal transformation is

G — guu - 9_29,” (23)
Wheref2 is a function of the four-coordinates. The Ricci tensor transforms like:

a

R— R=0"|R+64"" (InQ),,,— QJ}Qﬂ (2.4)

In addition, we require the scalar field to transform likeoaformalscalar field:

== (2.5)

The action under this transformation is (we ignore the first term - effectively the Einstein-Hilbert contributior
to this action which is certainly conformally invariant).

/d%«\/_( R+gﬂ”¢u¢> (2.6)

Sunstituting (2.3), (2.4) and (2.5) into (2.6) we get

4 4
/d:v\/ g~ { —Q a 02

+sﬂ¢W<mexﬂwa} (2.7)

Qa af
R+6 ( —) —6—9,0&75
He]

500 Q, Q,.0,
/d4x\/_{ R+¢( ﬁ> ¢ QQB+9“”{1/J,M¢,V+2W,MQ 2 62” (2.8)

8
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Simplifying further:

/ d'z/—g =S (2.9)

Q.
R+g‘”¢ wty + (Wg“ﬂ o )
6}

The third term will give no contribution to the equations of motion because it is a surface term - so will vanis
upon integration. The action (2.1) is therefore conformally invariant. We will now proceed to find the fielc
equations. Two equations of motion will be obtained, the first from the variation of (2.1) with respect to th
conformal scalar, the second with respect to the metric tensor. Variating with respect to the scalar field:

oyS = K/ d*x/— { (g‘“’\lf,,,);u} ow (2.10)
Requiring
0S8 =0, (2.11)

the relationship between the metric and the scalar field is obtained:
v
(9 W) =GR (2.12)

And variating with respect to the metric tensor gives

1 W2 g U2 02
6,8 =— [ d*av=g|[1-— ( W—ﬂ> 1—— ) —g¢*f(1-— )
o 2K/ ' g[< 6) o 2 ! +< 6 );u;v ! 6 ;a;,@gli

UL, — %gaﬁ\pﬂxpﬁ]agw (2.13)

Using (2.11), we get the matter analogue to (2.12), and let it represent a source term. This source term |
result of taking the functional derivative 6fwith respect to the metric tensor. So the source term by definition
represents the energy-momentum tensor.

2 2

P2 g U U
kKT = (1 - — <Rl,— “”R)— 1—— By (1-—
( 6 ) 8 2 6 HTHZ T 6 58 i

— T, + %ga%,aqfﬁ (2.14)

Taking derivatives and noting that the covariant derivative of a scalar is simply reduces to the gradient,

w2 g v g v 2
v — (12 20 (RV—L”R)— By =4+ T SR L 2.15
( 6 ) © 2 g g;u 3 /8 + 6 ’ 7ﬁ + 3 M5 3 M ) ( )
Taking the trace, we find
\1,2
-R (1 — F) VgV o5 = KT (2.16)

Now using our first equation of motion (2.12), and expanding the covariant derivative, recalling that the covat
ant derivative of the metric tensor is zero in every frame; we substitute into 2.16 and obtain

R = —kT" (2.17)

A most useful metric solution for this spacetime is one which can be compared with a known solution to tr
Einstein field equations. The Schwarzschild metric is a spherically symmetric, static and isotropic solution
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the Einstein field equations emptyspace. By restricting our solution to be of this type, we aim to obtain a
Schwarzschild analogue to our conformal Brans-Dicke theory. The energy-momentum tensor is zero for st
an empty spacetime, giving = 0 and reducing the equations of motion to

(V). =0 (2.18)
and

2
Sy, U, =0 (2.19)

v
—V ., —
s 3

2 g v g
1 - — <R V—ﬂR>— of =, G ® \Ija\Ij

6

An isotropic metric, as a function of the radial coordinate only, with the angular dependence equivalent to
2-sphere metric has the general form

ds® = e qt? — B qp? — 2 (d62 + sin® 9d¢2) (2.20)

We can quickly find the equation of motion for the scalar field (2.38)¥ , is a contravariant tensor, so (2.18)
is the covariant divergence of a contravariant tensor. The covariant divergence of a contravariant tamsor
be shown [6] to be equal to:

B VK
Vin = \f %u 4 (2.21)
where g =),,¢g". This gives for (2.18)
1 A=B o .
—5——— |—€e z r’sinfy)/| =0 2.22
e 2 r2gin 0 [ ¢]T ( )
Giving
r2e Ty =k (2.23)

To find the solution for the scalar field as a function of the radial coordinate, we require the solutions to tf
metric coefficientsA(r) andB(r). We shall find these by solving the second field equation (2.19). Using the
relation:

ov

Vo = Wi = W = 5T, (2.24)

we are able to express the covariant derivatives in terms of the Christoffel symbols. In addition, the second fi
equation depends on the Ricci tensor, which is defined by an index contraction over the Riemann tensor :

R, =R, =T —T1  +I.I% —T7T¢ (2.25)

pyv By B,V ey uv eps vy

Both (2.24) and (2.25) depend on the affine connection, which can be expressed in terms of the metric tensc

%, = %g“‘s (985 + 9578 — 93v.0) (2.26)
The nonvanishing Christoffel symbols for the metric (2.20) are
Pt - A?' (2.27a)
T} = Ag/eA‘B (2.27b)
m= (2.27c)
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[y =—re (2.27d)
[hy=—r sin? fe B (2.27€)

1
[y =Tg, =I0, =T% = . (2.27f)
I, = —sinfcosf (2.279)
[y =T, = cot 6 (2.27h)

where the dash denotes the partial derivative with respeciltoe components of the Ricci tensor are:

1 24" A
Ry= et BlA+ 7 4+ (A -DB) (2.28a)

2 r 2

1 2B’ A
= |-A+ = - (A-P 2.28b
By [ 2L ) (2.280)
BT / /

Rgg = ¢ [5 (B'— A) — 1} +1 (2.28¢)
R¢¢ = sin2 9R99 (228d)
R, =0,p#v (2.28e)

Since both the Ricci tensor and the metric tensor are diagonal, andisiace) (), the second equation of
motion (2.19) has four non-trivially satisfied components. Substituting the Christoffels and the Ricci tensor, w
find four second order differential equations with unknown# andB. The t-t component:

%02 1 A-B " 2A' A’ ! ! 1 A—B,_ 12 %WJ' ' A—B __
The r-r component:
1#2 1 " 28/ A/ ! / 1 2 1? " /b, _
(1—€)§{—A +7—7(A—B)]—5¢ +§(w —¢§)—0 (2.30)
0— 0. , ) )
(1 - %) {e*b [g (B — A) — 1] + 1} + %e*B ()% + 1”;/’ re B =0 (2.31)

2

{< - %2> {e*b [g (B'— A" — 1} + 1} + %e’B (z//)z + %WreB} sin?0 =0 (2.32)

Note that the last equation is simplin? 6 times thed — @ equation. We have an overdetermined system of
differential equations, and the last one gives us nothing new, so we therefore ignore it. Since we are deal
with an empty spacetime, the Ricci scalar is 0.

R=g"Ras=g"Ru+ g Ry + 9" Rog + g"* Ryy = 0 (2.33)

Writing the Ricci scalar in terms of the metric coefficients:

Ree®|aa 2 By+ S —py. | -2 -0 (2.34)

r 2 2 r2
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Now taking the partial derivative of the first order differential equation for the scalar field (2.23) with respect
r, we obtain

A-B 2
P+ ( + —) P =0 (2.35)
2 r
We can substitute equations (2.34) and 2.35) into the components of the field equation in order to eliminate
second derivatives. ) B 5 o A
B Yt B’ e _ 1 R I A/ _
o [(- B (B ) 236
2 A/ 1— €B 77Z}/Q ¢¢/ A/ 9
—-B _ - _r - = —
e Kl 6)(r+ 2 ) 5 3 (2+T)} 0 (2.37)
e*B 1_¢_2 B/_AI+€B—1 +¢_/2+¢¢/ _0 (238)
6 2r r2 6  3r| '

BecauseRr = 0, and since the ricci scalar is the trace (because of the symmetry), there is a linear depender
in (2.38), so we discard it. We have three unknowns - two metric coefficients and the scalar field, and we he
reduced our overdetermined system to three coupled differential equations - (2.23), (2.36) and (2.37).

2.2 Finding a Schwarzschild-like solution

Recall the Schwarzschild solution has the form

-1
ds?® = (1 — 2GM) dt* — (1 — QGM) dr? — r*d§)? (2.39)

r T

with dQ? the metric on the two-sphere, and the speed of light set to unity.
dQ? = d¢* + sin® fd¢? (2.40)

Note that the Schwarzschild solution has -B. In our search for an analogous metric in our space-time with
a conformally coupled scalar, we will enforce this on the field equations. So (2.23) becomes

A

o—
This restriction also reduces (2.36) and (2.37) to
2 A1
—=¢/ {w’ + (— + —) w} =0 (2.42)
3 2 r
This DE gives two sets of solutions, the first is the trivial solution/fand,
2 2GM
A=-Z=sel=eB=1- G (2.43)
r T
The second solution to (2.42) is
o—A/2
v=q (2.44)

,
Note that we now have two constants associated witkandq. To find the relationship between the two, we

differentiate (2.44) and equate it with (2.41).

e A1\ e A2
v == ()0 (2:49)
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Which has solution O
A2 P& (2.46)
q T

We require that the leading terms in the expansion of (2.43) are identical to the newtonian case. This forces
k= —q (2.47)

and
C=GM (2.48)

To find the constant g, we substitute, (2.41), (2.44), (2.47) and (2.48) in (2.43). This sets

q = V6GM (2.49)
Finally we have,
ds® = (1 — Gi\/[)Q dt* — (1 — Gi\/[>_2 dr? — r*d§)? (2.50)
with associated scalar field oM
e \/ET eI (2.51)

This metric is geometrically equivalent to an extremal Reissner-Nordstrom black hole, and is of the same type
those discussed in section 1, only derived from yet another starting point. At first glance, we note that the rad
at which the singularity occurs is st GM as opposed to the Schwarzschild radius2GM. To analyse the

geometry of this manifold in more detail, we shall consider the geodesics made by null test particles (photor
in the vicinity of a black hole. We shall investigate therefore the lensing of light in this Conformal Brans-Dicke
spacetime, and compare it with light propagating in its classic Einstein analogue - the Schwarzchild spacetir



Chapter 3

Testing the theory - Strong lensing by black holes

3.1 Geodesics in static isotropic gravitational fields

Because | intend to show the effects of matter on both CBD and Schwarzschild null geodesics, | shall derive
general formula for the deflection angle for photons in an isotropic spacetime. The general metric has the fo

ds® = e (r)dt* — eB(r)dr® — r2df* — 1% sin® Od¢* (3.1)

Since the metric solutions that | wish to investigate both have angular metric dependence equal to that on
two-sphere, we do not lose generality by imposifigas the metric angular terms coefficients. The geodesic
equation is

d?xH dx” dz”

+ I — =

dN? AN dA
where the affine paramater on the manifold\is The Chrisoffel symbols for this metric have already been
calculated (2.27a)-(2.27h). Substituting these into (3.2), an equation of motion for each of the four-coordina

is acquired:

2 / 2 2 2 2
1
ﬂ n B_(r) (dr) _ ye—B® <d_9) e B0 gin2g (@) + §A/(T)€A(r)—B(r) (ﬁ) =0 (3.3a)

(3.2)

d\2 2 \d\ d\ d\ d\
d20  2dO dr do\ 2
cavar . L 3.3b
e + CId sin 6 cos 0 (d)\> 0 ( )
2o 2dodr do do
2agar apav _ 3.3
o2 T iy et =Y (3:3¢)
d*t ,, L dt dr

Due to the metric isotropy, without losing generality we can confine the photon to the equatorial plane, settil
¢ = 7. This warrants (3.3b) to be trivially satisfied. Dividing (3.3c) by/d), and (3.3d) by dt/d, we find two
constants of motion:

d do 2\
a (ln a +Inr ) =0 (348.)
d dt

14
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(3.4a) yields conservation of angular momentum:

d¢
_ 249
J=r o\ (3.5)
(3.4b) gives
dt A
= (3.6)
Substituting (3.5), and (3.6) into (3.3a) gives the radial equation of motion as
d*r , dr\” ,e B0 A
- ) = Z —A(r)+B(r) —
et B'(r) (d/\) J S5t 2A(r)e 0 (3.7)
Multiplying this equation witl2A(r)dr/dA:
d B(r) dT 2 J2 —A(r) | _
o | +<d>\) +T2 e =0 (3.8)
We identify this constant of motion as the energy:
dr\* J?
_[ — B - 2 _ oA
E=e""+ (d)\) + 3 (3.9)
From (3.1), (3.5), (3.6) and (3.9) we find that ,
ds
E=-— A
e (3.10)

Since we are interested in the motion of massless particles only, the constant of proportionality between
affine paramatek and proper distancgvanishes. Hence, the energy for a photon is zero. Now, by solving (3.6)
for d)\, and inserting this into (3.5) we get

d¢ :
22 = Jem AW 3.11
7 Je ( )
This is independent of the affine parameter. Similarly using (3.6) in (3.9) we find
dr J?
B(r)—2A(r) [ 20 Y =AM _
e (dt) + e 0 (3.12)

If one uses (3.11) and (3.9) to eliminate the temporal component, we have a differential equaticesfar
function of the radial component only.

eBO) far\? 1AM
— — — = 3.13
- <dgz5) e = (3.13)
This is a seperable first order differential equation, so the solution can be written as an integral:
1
() eB(r)/Q eA(r) 1\ 2
o(r) :/r 2 < gz ﬁ) (3.14)

This means that given a radial distance from the black hole, its angular displacement at that radius can be fo
subject to initial conditions. It id thatholdsthe content given by the initial conditions. Since we are interested
in the lensing applications only, we need consider only the casalodundorbits. We therefore assume that
the particle approaches the black hole form infinity. In this limit, the metric becomes Minkowskian, that is
A(o0) = B(oo) = 1. The impact parametéris (see figure 3.1)
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"7

Figure 3.1: Basic deflection of light setup in the proximity of a large mass.

b rsin(¢— ¢oo) X 1(P — doo) (3.15)

whereg., is the incident photon direction. Also, because the field is infinitly weak here, the velocity is constan
50 d d
—v R E(T cos(p — ds)) ~ d_z
Inserting these into (3.11) and (3.12) we fine= 1 and.J = bV? = b. So for photons, the impact paramater is
the angular momentum. We now have found an equation for this unbound orbit (3.14) as a function of impe
parameter. For our purposes, it is more useful to give the orbit equation as a function of the distance of clos
approachry, rather than the impact parameter. To this end, we substitgte, into (3.12), and use the fact that
at this point, the rate of change of the radius with angle %O.: 0 (The photon has approached its maximum
proximity to the black hole, and will now begin its recession from the black hole.) This gives

) (3.16)

—A(r)

J =rpe 2 (3.17)

Note that (3.14) describd®lf of the photons complete geodesic. There is a complete symmetratiaund

r = ro. In other words, if one changes from a radial distance- D to ro — D, the deflection angle is the
same for a particulad. This implies then, that the total deflection angle, i.e. the deflection of the photon from
a straight line is

o= Ap=2(ro) — do| — 7 (3.18)
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For sake of accordance with the notation usually used in the literature, and indeed for the purpose of simplici
before proceeding to the analysis of lensing in the CBD spacetime, | shall take this oppertunity to make a slig
change to the metric coefficients, namely) = A" andb(r) = ¢B(). Inserting (3.17) into the orbit equation
and making the notation change, we have finally for the orbit:

~1/2

G e (N o)

3.2 Deflection angles for CBD and SCH

Before proceeding with the deflection angle calculations explicitly in terms of the CBD or Schwarzschild metri
coefficients, we shall find thehoton spheresWhile the event horizons of the CBD and Schwarzschild black
holes are'czp = 1 andrg., = 2 (letting GM = ¢ = 1) , the photon sphere radii are greater. The photon sphere
is an unstable photon orbit. Any incident photon with an impact paramater such that the distance of clos
approach isessthan the photon sphere will lsickednto the black hole, never to emerge. Because the photon
sphere is effectively infinitly thin, this orbit is unstable - no photon will stay just above or below it for long.
Those grazing the photon sphere will - because of their high proximity to the black hole, experiance maximu
deflection, possibly even circling the black hole multiple times before emerging. The photon sphere is given |
the largest solution to [15]

alr) _ <) (3.20)

a(r) — ¢(r)
wherea(r) is the temporal metric coefficient andr) the angular coefficient, (for both our black hole cases,
c(r) = r?). Recall the Schwarzschild and CBD and metrics are given by (2.39) and (2.50) respectivly. Th
simple photon sphere calculation gives = 3 andr,. = 2. The CBD photon sphere radius is therefore equal
to the Schwarzschild event horizon radius. It is not completely imprudent to at this stage remark the followin
Since the Schwarzschild photon sphere is smaller than the CBD one, we can expect the total deflection ar
for photons incident on either black hole to dgpeaterin the CBD case than in the Schwarzschild case. This is
due to the higher proximity that the CBD black holes allow the incident photons.

From a lensing perspective, the photon orbits (3.19) are not as useful to us as the deflection angles as a func
of the distance of closest approach. We are interested in (3.18). In terms of the metric coefficients, the tc
defelction angle is:

00 71/2 2 —1/2
o= 2/ ) [(1) (“(”’)) - 1] dr — (3.21)
o T 7o a(r)
In the treatment of the analysis of the above equation, | shall initially find approximations to the weak an
strong field limits for both cases using the procedure outlined by Bozza [15]. Following this, the results for th
direct evaluation of the above integral will be shown, and compared with the approximate ones.

Making the substitutions = % andu = ugz, the deflection angles for the Schwarzschild and CBD cases
are given by

2/1 de (3.22a)
Qgen, = -7 .
et 0 \/1—a2+rug(z®—1)
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d
acpp = 2 / < o (3.22b)
\/ 1—rud) 2

(x — roupz?)

wherer, andr, are the event horizon radii. The Schwarzschild case has under the square root on the denominze
a cubic polynomial, while the CBD case expression is quintic. Both are irregular elliptical integrals, and cann:
be evaluated analytically. Note that both expressions are regular over the integration interval, however ther
a complex pole at the lower limit. This pole represents the asymptotic behavoir of the photon defelction as
approaches the photon sphere. Expanding, iand dropping higher order terms, we get an approximation for
the deflection angles for the Schwarzschild and CBD cases respectively in the weak field:

U dx roug (1 — 23)
w22 [ =1+ =] - 3.23
osa 2 | g 1+ 5= - (5259
1 1_ 3
acpp ~ 2/ [1 + rcuo—i} - (3.23b)
0 l1—x

Now sincer, = 2r,, these two integrals are identical with solution

4
Oyeak = 4y = - (3.24)
0

This result shows that in the weak field limit, the deflection angles of photons in either spacetimes are identic
Therefore, only photons with a high enough proximity (those experiencing a strong enough field) to a bla
hole will show results that will differentiate between the two spacetimes. In analyzing the strong field limits ag
proximation to the deflection angle, we continue following the Bozza procedure. We transform the independe
variabler — 1 — x, giving

dz
agen = 2 -7 3.25a
St /0 \/(2 — 3rgug)x + (3rsug — 1)z — reupa’ ( )
/ dx
QSch =— 2 —
0 /2(1 = 2roup)(1 — reug)z + [2reuo(l — reug) — (1 — 2rpug)]a? — 2reug(l — 2rpug)x® — (roug)a?

(3.25b)
These equations hold fa, < u,, the divergence occurs when they are equal. Bozza seperates the integral in
two terms, one which divergds, and a regular terniz. We have thewmw = Ip + Iz — 7 with

dz
Ip,, =2 3.26a
Dsen /0 V(2 = 3rgro)z + (3rsug — 1)a2 ( )

dx
Ipeyy =2 /
Penp 0 V2(1 = 2r.u)(1 — reug)z + [2reug(1 — reu,) — (1 — 2r0ug)?] 22
These terms diverge when the distance of closest approach is the photon sphere. Howerver, the following te
do not:

(3.26b)

Ld 1
IRSh:2/ Sl [ (3.27a)
‘ o r 1— 2z
3
Lz 1
Tiopy = 2V2 /0 — |- (3.27b)
1— 2z
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Evaluating these two pairs of integrals gives

2
I, =2In <1 - @> (3.28a)
2
Ipoy, =2v2In (1 = @> (3.28b)
and
2
Ing,, =2n [3 (ﬁ - 1) } (3.29a)

4
Iy = 2V21n (2 n \/5> (3.29b)

Thus, provided the the distance of closest approach is close enough to the photon sphere, the total defelc
angles are given by

Qoo = —21In (1 . Z—Z) +2In (6(\/§ - 1)2> o (3.30a)
o Uo 4\/§
acpp = —2V21n (1 - u_,,) +2v21In (1 i ﬁ) — 7 (3.30b)

3.3 Simulation results

The evaluation of (3.21) was performed in Mathematica version 4.1. The Mathematica integration algorith
uses gaussian quadrature with adaptive stepping. The integration gave the following results for the deflect
angle:
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Deflection angle of Geodesic as a function of distance of closeset approach
25 ! | I

I
—— Conformal Brans-Dicke
Schwarzschild
— 1/2 revolution
— 1 revolution
; : : — 1.5 revolutions
20 D ......................... ......................... ......................... - 2 reVqut'OnS -

A5 b o .......................... ........................ ....................... a

Deflection angle (radians)

. ; ; ; ;
2 3 4 5 6 7 8

Distance of closest approach

Figure 3.2: Deflection angle against distance of closest approach for both €dges-(c = 1). Observe the
correct asymptotic behavior as the geodesics approach the photon sphere. The photon spheres aemdt

r = 2 for the Schwarzschild and CBD cases respectively. The horizontal lines indicate the angles for which t
photon has done 1/2 a revolution, 1 revolution etc. around the black hole.
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In order to check the strength of the integration routine, we compare it with the expressions for the stroi
field limit (3.30a) and (3.30b). First the Schwarzschild case comparison:

B e s S R P O PP P PP PP P E
: 5 | — Strong field limit approximation :
: : | —— Exact evaluation (numerical integration) | :
1 1 SOOI ASSO ............... .............. .................. .................. .............. .............. ................
12

—_
<o

Deflection angle (radians)
oo

i i i | i i
3 3.2 3.4 3.6 3.8 4 42 44 46 4.8 5
Distance of closest approach

0 | | |

Figure 3.3: This plot shows the relationship between the deflection angle and the distance of closest appro
for both the direct integral evaluation and the strong field limit relationship.
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Difference between computational integration and strong field limit (Schwarzschild)
0.35 T T T T T T T T T

031 : : ‘ : . .
0.2 ; , .

0.15- : : ~ : ~ .

Difference (radians)

O oo e B e ]

0.05- : 5 ‘ : 4

-0.05 | 1 | 1 1 | 1 | 1
3 3.2 34 36 38 4 42 4.4 46 48 5
Distance of closest approach

Figure 3.4: The difference between the strong field limit expression and the exact numerical expression.
expect the difference in the limit as the distance of closest approach tends to the photon sphere radius to be
if the integration routine is successful.

Ratio of computational integrational to strong field limit (Schwarzschild)
14 T T T T T T T T T

Ratio

i 1 i i i
3 3.2 34 36 38 4 42 4.4 46 4.8 5
Distance of closest approach

Figure 3.5: Once again, a check on the accuracy of the integration method.
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In order to fix an upper bound for the relative accuracy,amem iro the photon sphere region by 10°
times.

x10° Relative accuracy (Schwarzschild)
10 T T T ! !

Ratio
I
I
|

3 3.0005 3.001 3.0015 3.002 30025 3.003 3.0035 3004 3.0045 3.005
Distance of closest approach

Figure 3.6: Theaelativeaccuracy of the integration routine with the strong field limit in high proximity to the
photon sphere. At this resolution, small fluctuations from the correct values are visible in the integration routin
This places an upper bound on the relative accuracy at 1/10000.

The integration routine comparison for the CBD spacetime:
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Deflection angle of Geodesic as a function of distance of closest approach (CBD)

B0 e e PR PR e T TR I RPPpPpoeS :
5 | —— Strong field limit approximation 5

| —— Exact evaluation (numerical integration)

45
QO b oo ........................ ........................ .............................. ..........................
351 _________________________ e — T ——

GO _________________________ e —— A — e
251

DO ........................ .............................. ........................ .........................

Deflection angle (radians)

0 | I I i
2 25 3 3.5 4 45 5
Distance of closest approach

Figure 3.7: This plot shows the deflection angles for a given distance of closest approach. (CBD)
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Difference between computational integration and strong field limit (CBD)
0.4 T T 1 I f

0.35

03

025

0.2

0.15

Difference (radians)

0.1

0.056

-0.05 I | I | |
2 . .

Distance of closest approach

Figure 3.8: The difference between the strong field limit expression and the exact numerical expression.
expect the difference in the limit as the distance of closest approach tends to the photon sphere radius to be
if the integration routine is successful.
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Ratio of computational integration to strong field limit (CBD)
! ! ! !

1.6

2 5 ; : :
5 08 : : : : §
@ ; : :
06 P ........................ ........................ ............................... ....................... -
3 I S _________________________ e — T — i
025 ......................... ......................... ........................ ........................ _
0 | I i | i
2 25 3 35 4 4.5 5

Distance of closest approach

Figure 3.9: The ratio between the two methods (Should both be unity in the photon sphere limit if the integratic
limit does not diverge).
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4 Relative accuracy (CBD)

Ratio

1.5

i
2.05 2.1
Distance of closest approach

Figure 3.10: Theelativeaccuracy of the integration routine with the strong field limit in high proximity to the

photon sphere. We have zoomed in to the region just above the photon sphere. At this proximity the integrati
routine’s accuracy begins to diverge. The integration is not as strong here as for the Schwarzschild case.
relative accuracy here is about 1/1000. This can be expected considering the slightly more complex nature

the CBD integral.
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Example orhit
8 T T T T
Schwarzschild photon geodesic
—— CBD photon geodesic

Space (y)
o
I
|

Space (X)

Figure 3.11: This shows an example of the photon trajectory through space, simply the evaluation of (3.19) fo
particular impact paramater and associated distance of closest approach. Here, the distance of closest appl
of the photon in the Schwarzschild spacetime is 3.1m. The distance of closest approach of the CBD photor
3.9m (simply chosen because this gives approximately the same impact parameter as the Schwarzschild pho
The Schwarzschild photon is close enough to circle its black hole, while the CBD photon is simply bent by i
black hole - due to a low proximity to its own black hole. The two bold circles in this plot are the black hole
photon spheres. The larger belongs to the Schwarzschild black hole with radius r = 3m and the smaller belo
to the CBD black hole with radius = 2m.
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Example orbit

6 |
4 I ﬁ |
2 - —
>
3 0oF -
(1]
0
0
2+ i
-4 Schwarzschild photon geodesic N
—— CBD photon geodesic
_6 | | | | | | |
-8 -6 -4 -2 0 2 4 6 8

Space (X)

Figure 3.12: An example similar to the above, only here the incident photons have lower distances of clos
approach. The CBD photon’s distance of closest approach to its black hole is 2.1m. The Schwarzschild pho
has impact paramater too low to orbit its black hole - thus, it crosses the photon sphere and is swallowt
Since both spacetimes have only one solution to (3.20), and so only one orbit, a photon which crosses
orbit will eventually cross the event horizon and will therefore never emerge. The reason we do not see t
photon trajectory on the above plot after it crosses the photon sphere, is because of the assumption made i
derivation of the orbit equation. The orbit equation integrand becomes complex when the photon crosses
photon sphere. It was assumed that the relationship between the angular position and the radial position h:
stationary point. A photon crossing the photon sphere has a monotonically decreasing radius.

3.4 Application to lensing

Leaving geometrized units behind and turning to Sl units, we shall look at lensing in our own galaxy. The sta
orbiting the galactic center provide us with ideal candidates for strong lensing. We aim to distinguish the tw
spacetimes from one another, and attempt to find a lower bound on the required telescope resolution.
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The most general lensing setup is as follows:

ROUMCE lenz obeerver
plane plane plane

Figure 3.13: A generic lensing setup. While here the source plane is further away from the observer plane tt
the lens plane is; lensing is not restricted to this. In addition, this diagram shows only the first relatavistic imag
(Essentially aistortedEinstein Ring because the source is not collinear with the observer and lens.)

a in the above diagram is the deflection anglés the impact parametef, is the angular position of the
source in the absence of the lens, @hid the angular position of the source as seen by the observer. The
diagram shows only the first image that reaches the observer. There are an infinite number of images, the hic
the image number, the lower the impact parameter and deflection angle (after subtacéingppropriate
number of times). After calculation of the deflection angle for a given distance of closest approach (alrea
done above), and given the above setup with knewrn3, D;s and D,s; we need to find the corresponding
deflection angle.
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Using simple geometry one can show that the relationship betwaad« is given by [19]

D
tanf = = [tan @ + tan (o — 0)] + tan 3 (3.31)
oS
For smalls, this simplifies to
D
0 =05+ N (3.32)
D,s

Using the abovédens equationonce we have found, we can findd - our observable. We shall use as our

example the star S2 in orbit around the black hole Sagitarius A*. The distance to the Sagitarias A5ig Pc.

S2 has [20] an orbital period of 15.240.36 years, the inclination of the orbit normal with respect to line of sight
is 131.9+ 1.3 degrees, the semimajor axis has angular size 0.2226025 arcseconds, and the eccentricity
of the orbitis 0.876+ 0.0072. The simulations give the following results:

x10° Lensing of SO2 by Sagitarius A* (first image)
14 T T T T

12

10

Dec. (arcseconds)
- (o]
I I

]
I

R.A. (arcseconds) x10°

Figure 3.14: The blue curve shows the angular positions of the images from the star S2 throughout its orbit
the absence of the black hole. The red curve shows the angular positions of the first relatavistic images fr
the star throughout its orbit. Unfortunately, even at this proximity to the black hole, the Schwazschild and CB
deflection angle cases give the same results.(Both lie on the red curve.) The asymmetry in the relatvistic ima
is a consequence of the tilt in the star’s orbit. (The orbit is not flat-on.)
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3.5 Final conclusions

The Chiba connection between Randall-Sundrum branes and a conformal Brans-Dicke theory allows us to
the manifestation of branelike features on our brane. Beginning with this link, the CBD action was variate
giving the corresponding field equations. Using these we were able to find a black hole metric solution analagc
to the Schwarzschild metric - static and isotropic. This metric had geometry equivalent to that of an extren
Reissner-Nordstrom spacetime. The deflection of photons by black holes in the Schwarzschild spacetime diff
from the CBD spacetime in the strong field - the weak field gives identical results. It is for this reason, that on
the observation oéxtremephenomena, like the deflection of light in high proximity to a black hole would
provide a testable oppertunity to observe the black-hole like features of our universe. Upon consideration of 1
null geodesics in generic spacetimes with only radial dependence on metric coefficients, an expression for
deflection of light by black holes was obtained. This involved an integral which could not be solved analyticall
so two approaches were used. The first was a direct numerical evaluation of the integral. The second mett
valid only in the strong field limit was found following the approach outlined by Bozza. Approximate solutions
of these types were found both for the Schwarzschild spacetime and the CBD spacetime. The strong field li
solutions were used to check the strength of the integration routine. The implementation of the routine to t
Schwarzschild case exhibited a highelative accuracy {0~*) than the CBD case integrationbput10~3).

Both however, are well within the required accuracy range. The application of the deflection of light to lensin
was considered. The example used was the star S2 in orbit around Sgr A*, the black hole at the centre of
galaxy. It was found that even in this case there was no observed difference between the two spacetimes
the first relatavistic images. Thus, the required telescope resolution is certainly beyond the technology availa
today. Should astronomers be able to observe with high resolution the positions of relatavistic images, we wo
be provided with a strong tool for determining the nature of black holes - and thus hint at the strengths of vario
theories of gravity.
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