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Zusammenfassung

Die “Splitting Functions” zu den verschiedenartigen masselosen QCD- und MSSM-QCD-Antennen in nächst-
führender Ordnung (NLO) sind bereits berechnet worden [1–3, 7, 13]. Die Zielsetzung dieser Arbeit ist einen
Überblick über dieses Feld zu präsentieren, die in der Literatur bekannten Ergebnisse zu bestätigen und sich
anschliessend auf massebehaftete NLO-Antennen zu konzentrieren. Dem Leser wird eine prägnante Einführung
in die Standard-QCD geboten, ausserdem werden die Besonderheiten des infraroten Limes der QCD erörtert.
Nach diesem kurzen Überblick werden vier verschiedene Antennen betrachtet: (1) die Quark-Antiquark-Antenne
von γ → qq̄g (A0

3), (2) die Squark-Antisquark-Antenne von γ → eqēqg, (3) die Quark-Gluon-Antenne des Neu-
tralinozerfalls eχ0

→ egqq̄ (E0

3) und (4) die Quark-Gluon-Antenne des Higgszerfalls H → gqq̄ (G0

3). Es werden
jeweils, ausgehend von den Matrixelementen (zusammen mit den entsprechenden Regeln), die masselosen und
massebehafteten Amplituden mit Form [14] berechnet. Die Besonderheiten des infraroten Limes dieser Prozesse
werden jeweils bezüglich der Antennen analysiert.

Abstract

The splitting functions for various massless QCD and MSSM QCD antennae at next-to-leading order have been

calculated [1–3,7,13]. This text aims at providing an introduction to this field of study, reproduces those results

available in the literature, and focuses in particular on calculating the massive antennae at NLO. The reader is

offered a concise introduction to standard QCD, and to the infrared limit features evident in QCD processes.

Following this succinct introduction, four different antennae are featured: (1) the quark-antiquark antenna from

γ → qq̄g (A0

3), (2) the squark-antisquark antenna from γ → eq ēqg, (3) the quark-gluon antenna from neutralino

decay eχ0
→ egqq̄ (E0

3), and (4) the gluon-gluon antenna from Higgs decay H → gqq̄ (G0

3). In each case, the

Feynman diagrams and matrix elements are presented (along with the appropriate rules), and Form [14] is used

to compute the massless and massive amplitudes. The limiting features of these processes apropos antennae are

analysed for each case.
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1 Introduction

1.1 A concise review of QCD

Quantum chromodynamics emerged in 1981 initially as a theory describing a mechanism to account for
the seemingly anomalously high number of strongly interacting elementary particle species produced in
particle accelerators. The species in the particle zoo had been seen to increase considerably. Understand-
ing of physics at the time lacked predictive power to explain such observed phenomena.

As the independent proposals of Gell-Mann and Zweig purported, these hadronic species were in
fact not elementary, but were rather made up by bound states of quarks - fermionic point-like particles.
The initial reasoning was part empirical, part hopeful: it was argued that the known hadrons could be
classified in group-theoretical terms, as multiplets of the special unitary Lie group SU(3), using isospin and
hypercharge as the appropriate quantum numbers. These known hadrons belonged to higher dimensional
representations of SU(3). However, the fundamental representation remained empty. Thus, the quark
was proposed as the fundamental representation of SU(3).

In this theory, a bound state of three quarks together builds a baryon, and a bound state of a quark
and anti-quark builds a meson - in this way explaining the hadronic particle excess. Quarks carry electric
charge of either ±1/2 or ±2/3 of the electron charge. Of course, at this stage, no such particle with a
fractional electric charge had been observed.

QCD is a quantum field theory. Consequently, it shares all the basic properties evident in other types
of quantum field theories. Indeed, for all intents and purposes, the mathematical procedure followed in
calculating the amplitude for a process in perturbation theory is the same as that followed in quantum
electrodynamics - save for the different rules for basis states, propagators and vertices, all of which are
dictated by the QCD Lagrangian density.

LQCD = Lquark + Lgluon + Lgauge-fixing + Lghost (1)

where Lquark is described effectively by the Dirac Lagrangian (the quark being fermionic)

Lquark =
∑

f

q̄f
(
i /D −mf1

)
qf (2)

where Dµ is the yet-to-be-defined covariant derivative, and the slash on the covariant derivative is the
Feynman slash, where /a = γµaµ, and γµ is the gamma-matrix satisfying the Clifford algebra anti-
commutation relation {γµ, γν} = −2ηµν , where ηµν is the Minkowski metric. Here we have summed over
the 3 quark flavours, each of which is represented by a triplet of fields in colour space:

qf (x) =



q
(r)
f (x)

q
(g)
f (x)

q
(b)
f (x)




The colour subscripts are r(ed), (g)reen and (b)lue. Due to the internal colour degrees of freedom being
independent of physical observation, we should be free to perform any rotation of the colour fields into
one another. Thus we obtain a local SU(3) symmetry. This corresponds to a setting of the covariant
derivative of

Dµ ≡ ∂µ1 + igtaAa
µ
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where ta is the generator of SU(3), and Aa
µ is a vector gauge field which we have introduced. This vector

gauge field corresponds to the gluon field. By constructing the field strength tensor of the gluon field,
we effectuate a kinetic term in the Lagrangian density. The field strength tensor F a

µν is given by the
commutator of the covariant derivative, yielding

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν .

Here fabc corresponds to the structure constants of SU(3). The gauge-invariant quantity is formed by
taking the trace of the field strength tensor, and adding an appropriate normalisation,

Lgluon = −
1

4
Fµν

a F a
µν (3)

The final two terms in the QCD Lagrangian density concern us little. The gauge-fixing term1 is added so
as to aid in properly defining the gluon field, and the ghost term serves to eliminate unphysical degrees
of freedom.

In order to use our theory for calculating physical observables, the Lagrangian density is split into a
free part, and an interaction part

Ltotal = L0 + LI (4)

In quantum field theory, the propagator between an initial and a final state is needed in order to cal-
culate the amplitude for a given process. As QCD is a quantum field theory which cannot be solved
analytically, this propagator cannot be written as a function of the total Lagrangian. Thus we invoke
perturbation theory, and express the interacting propagator as a function of the non-interacting ground
state, the non-interacting propagator, and by performing a perturbative expansion of the interacting part
of the Lagrangian in the strong coupling gs. A Feynman graph is a diagrammatic representation of the
interacting propagator for a particular expansion order.

There are effectively three types of Feynman rules which are required in order to evaluate a Feyman
diagram: A rule for each vertex type, a rule for each propagator type, and a rule for each basis state.
The former two are described by the interacting part of the Lagrangian, while the latter is given by the
spin-nature of the fields themselves. Consequently, the QCD Lagrangian provides us with the necessary
information to calculate interactions between the quarks and gluons. For our purposes however, we shall
need more than this. Some of the processes which we shall consider use virtual photons as incoming states,
interacting with a colour-charged and electricly-charged fermion. For this we shall require the appropriate
QED rules. Moreover, our phenomenlogy pertaining to antennae, features MSSM (Minimally Symmetric
Standard Model) particles - for which a modest introduction is required.

1.2 A note on the supersymmetric extension

The supersymmetric extension to the standard model (hereafter SUSY) introduces a symmetry between
bosons and fermions. It attempts to solve physical problems which the SM itself does either not account
for or not address. Among others, SUSY offers an explanation to the hierarchy problem, provides a dark
matter candidate, and unifies the gauge couplings at high energies. The symmetry itself relates particles of
a fermionic spin to a ‘brother’ particle with a bosonic spin, and vice-versa. Each SM particle therefore has
a supersymmetric partner. The SM spin-half quark’s spartner is the spin-zero squark. The SM spin-one
gluon’s spartner is the massive, spin-half gluino. The neutralino is a mixed-state fermion, composed of the
supersymmetric partners of four SM gauge bosons. Due to the assumed symmetry-breaking mechanism,
the superpartners have masses far higher than their SM counterparts, which accounts for them having
remained unproduced in modern particle accelerators.

Some of the processes which we shall consider require rules for vertices for interactions between the
aforementioned SUSY particles and the standard QCD ones. We shall cite the corresponding interacting
Lagrangians when necessary.

1In this text the Feynman gauge ξ = 1 is used
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1.3 Divergencies in the amplitudes

The focus of this text is an examination of the infrared limit features of the various processes. In any
process, infinities in the matrix element or amplitude naturally arise from zeros in the denominator.
Non-unitary denominators arise only from propagators. [7]

We consider a process in which a hard parton radiates a gluon. In this case, the hard-parton exam-
ple is a quark, but can indeed be replaced by any parton. The corresponding propagator is of arbitrary
spin (this would change only the numerator), and has form

(Propagator) ∝
1

(pq + pg)
2
−m2

q

=
1

2EgEq (1 − βq cos θqg)
(5)

where the subscript p denotes the hard parton, θqg is the angle between the parton and the radiated
gluon, and

βq =
|p|

Eq

=

√
1 −

m2
q

E2
q

Infrared divergencies in the amplitudes come in two types. From (5) we see that there exist two regions
which exhibit an infrared divergence.

(Propagator)
−1

−→

{
0 Eg → 0 soft

2EgEq (1 − βp) → 0 θqg → 0 collinear
(6)

The first limit, called the soft limit corresponds to the gluon’s energy tending to zero. The second limit,
the collinear limit occurs when the parton and the radiated gluon emerge from the vertex in the same
direction. If the parton is massive, then to hit a collinear limit divergence we require in addition mq → 0.
In this case, the limit is called the quasi-collinear limit. Later, when we calculate the NLO amplitude for
a given massless process, we shall use both of these limits as a check on the matrix element, by comparing
it with the LO amplitude.

Let us first consider the soft limit.

1.3.1 The soft limit

Arguing without rigour, and thinking in terms of Feynman graphs, we would expect that in the limit in
which the gluon’s energy tends to zero, we should somehow arrive at the same process, only one order
lower, as the following schematic Feynman diagram demonstrates:

soft
−→

Because however we reach a divergence in the soft limit, we have to be more crafty in defining this limit.
Given an amplitude for a tree-level process with m outgoing states, we make the limiting soft link with
the m− 1th amplitude as follows:

T 0
qg...pm

soft
−→ T 0

q...pm−1
corresponds to lim

pg→0

(
T 0

qg...pm
·S−1

abc

)
= g2

sT
0

p...pm−1
(7)

where Sabc is the eikonal factor, defined by [12, 13]

Sabc = 2

(
sac

sabsbc

−
m2

p

s2ab

−
m2

p

s2bc

)
(8)
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where sij are the Mandelstam variables, sij ≡ 2pi · pj ; and a and c denote the hard partons, and b the soft
gluon. gs is the coupling at the parton-parton-gluon vertex. Each time we calculate an NLO amplitude,
we shall confirm that the amplitude reduces to the LO amplitude in the soft limit. With the confidence
that this provides us, we use the collinear limit, not as a check on the matrix element, but rather to
calculate the splitting function.

1.3.2 The collinear limit and its relation to the Altarelli-Parisi splitting function

As with the soft limit, we can relate the amplitude for a process with m outgoing states to the amplitude
for the m− 1 process by taking the appropriate collinear limit. Consider the following generic portion of
a Feynman graph, independent of the overall structure of the rest of the diagram:

1||3
−→

1

3

2

1̃3

2

Here, a gluon has been radiated between two partons. We seek to calculate

T 0
q1(p1)q2(p2)g(p3)...pn

1||3
−→ T 0

q1(p1+p3)q2(p2)...pn−1

P (z)

s13
(9)

where P (z) is the splitting function. Lets us first consider the case in which all particles are massless.
In the particular collinear limit which we have chosen, the first parton becomes collinear with the gluon.
In order to relate the two sides of the limit, we make the following parametrization: We define the
momentum fraction z, to be the fraction of the total momentum in p1. Thus the momentum fraction
carried by p2 is (1 − z). Defining P = p1 + p3, the Mandelstam variables in this splitting become

s12 = 2 (1 − z)P · p2 and s23 = 2zP · p2

making these substitutions, we are then able to calculate the antenna function with

Pq→qg (z) =
C

g2
s

lim
s13→0

T 0
m

T 0
m−1

s13 (10)

where C represents a general colour prefactor, brought about by the colour algebra of T 0
m which does

not feature in T 0
m−1. The form of the splitting function P (z) depends only on the particle from which

it splits, and the radiated particle. We shall calculate the quark-antiquark splitting function (the A0
3

antenna) in section (2.3.2), first for the massless case, and then the massive. The splitting function does
not depend on any other part of the diagram. It is universal. Consider a collinear limit in the following
arbitrary example:
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1

3

4

5

2

−→
1||3

1̃3

4

5

2̃3

×

1

3

2

1̃3

2̃3

whose amplitude in the collinear limit 1||3 is given by

|M0
qq̄ggg |

2 (1, 3, 4, 5, 2)
1||3
−→ |M0

qq̄gg|
2
(
1̃3, 4, 5, 2̃3

)
×

|M0
qq̄g|

2 (1, 3, 2)

|M0
qq̄|

2
(
1̃3, 2̃3

) (11)

Now the A0
3 antenna (the quark-antiquark antenna) is exactly the ratio on the right,

A0
3 ≡

|M0
qq̄g|

2

|M0
qq̄|

2
(12)

which has been calculated using the standard quark-antiquark splitting function (10). By knowing the
splitting function, we are able to apply it in calculating the collinear limit, no matter the geometry or
complexity of the overall process. Later, we shall confirm the universality of the splitting function by
computing collinear limits which exhibit the same splitting phenomenology, only within different pro-
cesses.

As designated for the quark-antiquark antenna in (12), an antenna is a ratio of amplitudes - a higher
order process is normalized with the corresponding leading order process. The computation of QCD jet
observables in collider physics necessitates a method by which infared singular configurations may be
subtracted. Antenna functions describe the infared singular behaviour of colour-ordered QCD matrix
elements due to the emission of unresolved partons inside an antenna formed by two hard partons. The
antenna factorization of colour-ordered matrix elements provides a method by which radiation divergen-
cies can be subtracted. The antenna function can thus be used to deal with unresolved partons.

1.4 How we proceed

We shall consider five different antenna types. For the first antenna, the quark-antiquark antenna (A0
3),

we shall perform the leading-order calculation ‘by hand’, so as to give the reader a walkthrough (or
perhaps a reminder) regarding the manner in which an amplitude is calculated from the matrix element.
For the next-to-leading order process, and every amplitude calculation thereafter, we shall simply use the
algebraic manipulator Form [14] to evaluate the amplitude. For each process, we shall list the necessary
Feynman rules and draw appropriate Feynman diagrams. After presenting the resulting amplitude for
the LO and NLO cases, we shall confirm that the massless NLO amplitude reduces to the massless LO
amplitude in the soft limit. Following this, we calculate the splitting function for the antenna, and
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compare with the literature. (All of the massless splitting functions which we intend to calculate have
already been computed in the literature.)

We then move onto the massive case for the particular antenna, and similarly calculate the massive
soft limit (where applicable) and the quasi-collinear limit which shall yield massive splitting function.

2 Quark-Antiquark Antenna A
0
3

The first process which we shall consider is the process by which a virtual photon ‘decays’ to a quark-
antiquark pair, and one of the quarks then radiates a gluon γ → qq̄g. At leading order, the only interaction
that occurs is between the photon and its decay into a quark-antiquark pair.

2.1 Leading-order process - a calculation ‘by hand’

2.1.1 Rules

As a primer, we calculate the amplitude of the leading-order γ → qq̄ diagram [7]. We shall make use of
the result later in calculating the splitting function for the A0

3 process. The Feynman diagram is:

γ

q,~p1

q̄,~p2

The leading order γ → qq̄ process contribution

The quark basis states are fermionic,

u (pi)

v̄ (pi) v (pf )

ū (pf )

With the the contribution of the above vertex as −ieeqγνδij , we get for the matrix element,

Mµ = ū (p1) · − ieeqγµδij · v (p2) ǫ
∗µ (13)

where ǫ∗µ is the photon’s polarization vector, e is the electron charge, and eq is the quark’s fractional
electric charge (either ±1/3 or ±2/3).

2.1.2 Calculating the amplitude

The amplitude is given by the square of the matrix element:

M2 = MM† = (eeq)
2
· δijδji · ū (p1) γµv (p2) ǫ

µ [ū (p1) γνv (p2) ǫ
ν ]

†

= (eeq)
2 ·Nc · ū (p1) γµv (p2) v̄ (p2) γνu (p1) ǫ

µǫ∗ν
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Where we have summed over the colour polarisations of the quarks, and
∑
δijδji = Nc, the number of

quark colours. We have essentially used the following to ’reverse’ the order of the Hermitian conjugated
products:

[ūΓ1Γ2 · · ·Γnv]
†

= v†Γ†
n · · ·Γ†

2Γ
†
1γ

†
0u

= v̄
(
γ0Γ

†
nγ0

)
· · ·
(
γ0Γ

†
2γ0

)(
γ0Γ

†
1γ0

)
u

Where Γi refers to any γ matrix. Assuming no explicit polarization of the outgoing particles, we need to
take an average of the spin (provided no spin-sensitive measurement is made). Summing over the spin
polarisations and making the spinor indices explicit, we get

∑

spins

ū (p1)i γµ,ijv (p2)j v̄ (p2)k γ
µ
klu (p1)l ǫ

µǫ∗ν = −


∑

spins

u (p1)l ū (p1)i


 γµij


∑

spins

v (p1)j v̄ (p1)k


 γµ

kl

Here we have used ∑

pol

ǫ∗νǫµ = −ηµν

from the photon’s polarisation tensor. Using the spin-sum products [7, 10], we get

M2 ∝
(
/p1 +mq

)
li
γµ,ij

(
/p2

−mq

)
jk
γµ

kl

∝ Tr
{(
/p1

+mq

)
γµ

(
/p2 −mq

)
γµ
}

(14)

To proceed form this point, we need to take the trace over 4 gamma matrices (the first term), and a
trace over 2 gamma matrices (the final term). The trace over the cross terms yields nothing, as a trace
over an odd number of γ-matrices is identically zero. The algorithm is as follows: We use the Clifford
algebra relation to permute the first gamma matrix through the rest. As an example, we calculate the
trace over 4 γ-matrices:

Tr{γµγνγσγτ} = Tr{(2ηµν − γνγµ) γσγτ}

= 2ηµνTr{γσγτ} − Tr{γνγµγσγτ}

= · · ·

= 2ηµνTr{γσγτ} − 2ηµσTr{γνγτ} + 2ηµτTr {γνγσ} − Tr{γνγσγτγµ} (15)

And due to the cyclicity of traces,

Tr{Γ1Γ2 · · ·Γn} = Tr{ΓnΓ1 · · ·Γn−1} (16)

so we have
Tr{γµγνγσγτ} = ηµνTr{γσγτ} − ηµσTr{γνγτ} + ηµτTr{γνγσ}

We need to repeat this algorithm once more - this will once again reduce the number of the trace of
products of four gamma matrices by two. For n = 2, we get Tr{γµγν} = ηµνTr{1} = ηµν · 4, So (15)
yields

Tr{γµγνγσγτ} = 4 [ηµνηστ − ηµσηντ + ηµτηνσ]

Applying this to (14), and working with D = 4− 2ǫ, where D is the number of dimensions which we are
working in. We keep it arbitrary, and assume it be not necessarily integer, so as to keep open the possible
application of dimensional regularisation to circumvent the problem of divergent integrals. We obtain

M2 ∝ 8p1 · p2 − 8ǫp1 · p2 + 16m2
q − 8ǫm2

q

11



Changing to the Mandelstam variables, sij = 2p1 · pj and inserting the prefactors, we have our final
expression for the amplitude for the A3

0 case.

M2 = (eeq)
2
Nc

(
4s12 − 4ǫs12 + 16m2

q − 8ǫm2
q

)
(17)

We shall use this to normalize the next-to-leading order γ → qq̄g expression in the quasi-collinear limit
in order to find the A0

3 splitting function.

2.2 Next-to-leading order expression

At next-to-leading order, either the quark or the antiquark radiates a gluon. This gives two diagrams
over which we must sum before squaring to find the amplitude.

2.2.1 Rules

As well as the QED photon-quark-antiquark vertex, we require three additional Feynman rules: The
quark propagator, the QCD quark-antiquark-gluon vertex, as well as the gluonic basis state.

gµ,a

qi

qj

−igsT
a
ijγµ

Where gs is the strong coupling constant and T a
ij are the generators of SU(3) The quark field is spin-half,

and therefore takes the form of the fermionic propagator, only with a colour factor.

i j i

(
/p+m

)

p2 −m2 + iǫ
δij

The basis state includes the gluon’s polarisation:

ǫ (pi)
ν ǫ∗ (pf )µ

and ∑

pols

ǫ∗µǫν = −ηµν

2.2.2 Matrix element and Amplitude

The next-to-leading order diagram in A0
3 is

12



q,~p1

+ (~p1 + ~p3)
γ

g,~p3

q̄,~p2

+
γ

− (~p2 + ~p3)

q,~p1

q̄,~p2

g,~p3

At NLO, either the quark or the antiquark radiates a gluon.

From the above rules, the corresponding expression for the matrix element is

Mµ = ieeqgsT
a
ij ū (p1)


γσ

(
/p1 + /p3

+mq

)

(p1 + p3)
2
−m2

q

γµ + γµ

−
(
/p2 + /p3

)
+mq

(p2 + p3)
2
−m2

q

γµ


 v (p2) ǫ

∗ (p3)
σ (18)

We use Form [14] to evaluate the amplitude. Squaring, summing over the spins and gluon polarisation
states, as well as contracting over the incoming gluon, we get for the matrix element element assuming
massless quarks:

T 0
qq̄g ≡

∑

spins

Mqq̄gM
†
qq̄g = g2

sg
2
e

(
N2

C − 1
)
4

(
2
s12
s13

+
s23
s13

− 2
s13 ǫ

s23
+

s13
s23

+ 2
s12
s23

− 2
s12ǫ

s13

+
s23ǫ

2

s13
− 2 ǫ− 2

s12ǫ

s23
+

s13 ǫ
2

s23
+ 2

s12
2

s23s13
− 2

s23ǫ

s13
− 2

s12
2ǫ

s23s13
+ 2 ǫ2

)
(19)

2.3 Limits

2.3.1 Massless Soft Limit

As an initial check on the matrix element, we compute the soft limit. This is the limit in which the
gluon’s energy is zero. The matrix element becomes singular as Eg → 0. We link the 3-parton process to
the corresponding 2-parton process in the massless soft limit as follows: [12, 13]

T 0
qq̄g

−→
soft

T 0
qq̄ ·S132 (20)

where S132 is the eikonal factor, and is defined by

Sabc ≡
2sac

sabsbc

(21)

where (b) corresponds to the soft gluon, emitted between two hard partons (a) and (c). We need to
therefore affirm the following:

lim
s13,s23→0

(
T 0

qq̄g ·
s23s13
2s12

)
= T 0

qq̄ (22)

We do so by parametrising s13 =⇒ λs13, s23 =⇒ λs23 and demanding λ→ 0 The left hand side yields

lim
λ→0

[
2
(
−2 ǫ s13s23 + s23

2ǫ2 + s23
2 + s13

2 + s13
2ǫ2 − 2 s13

2ǫ− 2 s23
2ǫ+ 2 ǫ2s13s23

)
λ2

s12

+4
(−s12 ǫ s23 + s12 s23 + s12 s13 − s12 ǫ s13)λ

s12
+ 4

s12
2 − s12

2ǫ

s12

]
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We have three terms here, proportional to different powers of λ. The higher the power of λ, the less
divergent the corresponding terms are in the matrix element. The terms which remain after the limit

is taken correspond to those terms in (19) proportional to
s2

12

s23s13
. Upon doing so, we return to matrix

element T 0
qq̄ as previously calculated (17).

2.3.2 Collinear Limit

With the assurance that the NLO case reduces to the LO in the soft limit, we now calculate the massless
splitting function. The collinear singularity arises from gluon emission off a massless quark in the same
direction as the quark. We shall confirm

T 0
q(p1)q̄(p2)g(p3)

−→
coll

g2
sCFT

0
q(p1+p3)p̄2

·Pq→qg (z) ·
1

s13

where CF is the colour factor N2
c − 1, and Pq→qg is the well-known quark-gluon splitting function as

a function of z, the momentum fraction of the quark. Thus we have p1 = zp4 where p4 is the total
momentum p1 + p3. Correspondingly, p2 = (1 − z) p4. In terms of the Mandelstam variables, this
amounts to

s12 = 2 (1 − z) p4 · p2 = (1 − z) s24

and
s23 = 2z p4 · p2 = zs24

We shall calculate the well known splitting function Pq→qg by computing

Pq→qg (z) =
1

g2
sCF

lim
s13→0

(
T 0

qq̄g

T 0
qq̄

· s13

)

It is easily verified that this yields

Pq→qg (z) =
1 + (1 − z)

2

z
− ǫz (23)

This splitting function has been calculated in the literature [7, 12], and agrees with our result.

2.3.3 Massive Soft Limit

We now repeat the above process, but for the massive quark case. By keeping mq nonzero, we get from
(18)

T 0
QQ̄g

≡
∑

spins

MQQ̄gM
†
QQ̄g

= g2
sg

2
e

(
N2

C − 1
)
4

(
2
s12
s13

+
s23
s13

− 2
s13 ǫ

s23
+

s13
s23

+ 2
s12
s23

− 2
s12ǫ

s13

+
s23ǫ

2

s13
− 2 ǫ− 2

s12ǫ

s23
+

s13 ǫ
2

s23
+ 2

s12
2

s23s13
− 2

s23ǫ

s13
+ 2

mq
2ǫ

s23
− 2

mq
2s23

s13 2
− 2

mq
2s12

s232

+4
mq

4ǫ

s232
− 2

mq
2s13
s232

+ 4
mq

4ǫ

s13 2
+ 2

mq
2ǫ

s13
+ 2

mq
2s13 ǫ

s232
− 2

mq
2s12

s13 2
+ 2

mq
2s12ǫ

s232

+8
mq

2s12
s23s13

+ 2
mq

2s12ǫ

s13 2
− 8

mq
4

s232
− 8

mq
4

s13 2
− 2

mq
2

s23
+ 2

mq
2s23ǫ

s13 2
− 4

mq
2s12ǫ

s23s13

−2
mq

2

s13
− 2

s12
2ǫ

s23s13
+ 2 ǫ2

)
(24)
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In the massive case, the soft limit is defined again by (20), only with eikonal factor given by

Sabc = 2

(
sac

sabsbc

−
m2

q

s2ab

−
m2

q

s2bc

)
(25)

Thus in verifying the massive soft limit, we need to show

lim
s13,s23→0


T 0

QQ̄g
·
1

2

(
s12

s23s13
−
m2

q

s223
−
m2

q

s213

)−1

 = T 0

QQ̄

Following the same approach used earlier in taking the soft limit in the massless case, it is a straightforward
task to check that the left hand side does indeed yield

T 0
QQ = (eeq)Nc

(
16 mq2 − 8 mq2ǫ+ 4 s12 − 4 s12ǫ

)
(26)

as expected

2.3.4 Quasi-Collinear Limit

In the massive case, the collinear singularity concept is somewhat different. The denominator of the
quark propagator does not become zero as the partons become collinear, due to the mass term. There
does however exist a divergence. This occurs when the quark mass tends to zero, and the gluon and the
quark become collinear. Once again we let

s12 = (1 − z) s24

s23 = zs24

and
s13,mq → 0

however, taking care that the ratio
m2

q

s13

remains fixed. We do this by setting

s13 ⇒ λ2s13

and
mq ⇒ λmq

and demanding λ → 0 and thus forcing the constancy of the the aforementioned ratio. The splitting
function is therefore given by

PQ→Qg (z) =
1

TF g2
s

lim
λ→0

(
T 0

QQ̄g

T 0
QQ̄

s13λ
2

)

=
1 + (z − 1)2

z
− zǫ−

2m2
q

s13
(27)

Catani et al [13] follow the same procedure in the treatment of the massive antenna, and reach the same
result.
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3 Squark-Antisquark Antenna

Here we turn to SUSY QCD (Supersymmetric Quantum chromodynamics), in particular, that given by
the MSSM (Minimally Supersymmetric Standard Model). This process is similar to the A0

3 process, only
with the quarks replaced by squarks. A photon thus splits into a squark and an antisquark at leading
order. At next-to-leading order, either the squark or the antisquark radiates a gluon; or the photon-
squark-antisquark vertex is replaced by a quadruple photon-squark-antisquark-gluon vertex, ensuring the
same final state.

3.1 Leading order expression

The leading order Matrix element is given by the following diagram:

γ

q̃,~p1

¯̃q,~p2

For the A0
3 process, we used dirac basis states, as the quark is a spin-half particle. The squark however,

being the supersymmetric partner of the quark, is a spin-zero boson and is scalar, and therefore carries
the trivial unitary basis state.

The photon-squark-antisquark vertex is given by −eeqiδ12 (p1 − p2)µ. The total contribution to the
matrix element at this order is therefore simply

Mµ = −eeqiδ12 (p1 − p2)

Since there are no fermionic basis states, the sum over whose spin would yield gamma-contracted mo-
menta, and since there are no such terms in the vertex itself, the result is completely independent of the
number of dimensions. After contraction with the incoming photon we get for the amplitude

|M|2 = MM† = (eeq)
2
Nc

(
s12 + 2m2

q

)
(28)

3.2 Next-to-Leading Order Expression

3.2.1 Rules

At NLO, as well as the previously used rules, we need rules for two vertices and one propagator [11]. The
squark-squark-gluon vertex:

gµ,a

q̃i
α,
~k

q̃j
β , ~p

−igsT
a
αβ (p+ k)µ δij
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The photon-squark-antisquark-gluon vertex:

γν

q̃i
α

¯
q̃j
β

ga,µ −ieeqgsT
a
αβg

µνδij · (−2)

Finally, we require the squark propagator. The squark is a scalar particle and the propagator numer-
ator is therefore unitary.

i j i
1

p2 −m2 + iǫ

3.2.2 Matrix element and amplitude

The total matrix element is:

q̃,~p1

+ (~p1 + ~p3)
γ

g,~p3

¯̃q,~p2

+
γ

− (~p2 + ~p3)

q̃,~p1

¯̃q,~p2

g,~p3 +
γ

q̃,~p1

¯̃q,~p2

g,~p3

Applying these rules, the expression we get is

Mµ =ieeqgsT
a
ij

[
((p1 + p3) + p1)σ ·

1

(p1 + p3)
2
−m2

eq

· ((p1 + p3) − p2)µ ǫ
∗σ

+ (− (p2 + p3) + p1)µ ·
1

(p2 + p3)
2 −m2

eq

· (− (p2 + p3) − p2)σ′ ǫ
∗σ′

− 2gµσ′′ǫ∗σ′′

]
(29)

After squaring and contracting with the incoming photon, and noting that
∑

pol ǫ
∗σǫσ

′

= −gσσ′

(for all
combinations of sigmas) we get for the amplitude in the massless case,

T 0
eqēqg

= (eeq)
2 g2

s

(
N2

c − 1
)
2

[
s12
s23

+
s12
s13

+
s12

2

s23s13
− 2 (1 − ǫ)

]
(30)

The massless amplitude for this process is given in [6], and agrees with the above result.
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3.3 Limits

3.3.1 Massless soft limit

Using the appropriate eikonal factor (indeed the same used in section (2.3.1)), it is easily shown that

lim
s13,s23→0

(
T 0

eqēqg
·
s23s13
2s12

)
=
CF

TF

s12

and coincides with (28) as expected.

3.3.2 Collinear Limit

Using the same parameterization as for A0
3,

s12 = (1 − z) s24

and
s23 = zs24

evaluating

Peq→eqg (z) =
1

CF g2
s

lim
s13→0

(
T 0

eqēqg

T 0
eqēq

· s13

)

gives

Peq→eqg (z) =
2z

1 − z
(31)

This agrees with that calculated in the literature [13].

3.3.3 Massive soft limit

The massive matrix element is from (29)

T 0
eQ ēQg

= (eeq)
2 g2

s

(
N2

c − 1
)
2

[
s12
s23

+
s12
s13

+
s12

2

s23s13
−
meq

2s13
s232

−
meq

2

s23
−
meq

2

s13

−
meq

2s23
s132

−
meq

2s12
s232

− 2
meq

2s12
s23s13

−
meq

2s12
s132

+ 2
meq

4

s232
+ 2

meq
4

s132
− 2 (1 − ǫ)

]
(32)

The massive process has been considered by Brandenburg et al. [1], and concurs with our result. Using
the appropriate eikonal factor, we find

lim
s13,s23→0


T 0

eQ ēQg
·
1

2

(
s12

s13s23
−
m2

q

s213
−
m2

q

s223

)−1

 = T 0

eQ ēQ

3.3.4 Quasi-Collinear Limit

s12 = (1 − z) s24

s23 = zs24

and taking
s13,mq → 0
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ensuring the ratio
m2

q

s13
stays fixed, we evaluate

P eQ→ eQg
=

1

g2
s

lim
λ→0



T 0

eQ ēQg

T 0
eQ ēQ

s13λ
2




= TF

[
2z

1 − z
−

2m2
q

s13

]
(33)

The splitting function for the case with massive squarks has also been previously calculated [13], and is
in agreement with our finding.

4 Quark-Gluon antenna from Neutralino decay E
0
3

We now consider the MSSM QCD process in which a neutralino decays into a gluino and a gluon, and
the gluon decays further into a quark-antiquark pair. χ̃0 → g̃qq̄. Here, an off-shell spin-1/2 particle
(the neutralino) decays into an on-shell spin-1/2 particle (the gluino playing the effective role of the
quark), and an on-shell spin-1 particle (the gluon). The Lagrangian density describing the neutralino
interaction coupling the gluino and a neutralino to the QCD field strength tensor is mediated through a
loop involving supersymmetric particles. The effective Lagrangian describing this interaction reads [3, 9]

Lint = iηψ̄a
g̃σ

µνψχ̃0F a
µν + (h.c.) (34)

where
(
ψa

g̃

)
is the gluino bispinor field,

(
ψχ̃0

)
, the neutralino bispinor field, and F a

µν the QCD field
strength tensor, and σµν is defined as the commutator of the gamma matrices

σµν ≡
i

2
[γµ, γν ]

4.1 Leading order process

The matrix element for the leading order process is given by

χ̃0

g̃(~p1)

g,(~p2 , ǫ,µ)

The Feynman rule for the above vertex which follows from the Lagrangian (34) gives the contribution as
−iηδabσµνp

ν
2 . The corresponding matrix element expression is

M0
2 = ψegσµνp

ν
2ψeχ0ǫ∗µ (35)

The gluino and neutralino are in general massive, meaning that the spin-sum products yield

∑

spins

ψeg (p1) ψ̄eg (p1) = /p1
+meg
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∑

spins

ψeχ0

(
peχ0

)
ψ̄eχ0

(
peχ0

)
= /p

eχ0
+meχ0

The squared matrix element is

T 0
eGg

∝ Tr
{(
/p1 +meg

)
σλ

ν p
ν
2

(
/p

eχ0
+meχ0

)
σλβp

β
2

}
(36)

= Tr
{
/p1
σλ

ν p
ν
2/peχ0

σλβp
β
2

}
+megmeχ0pν

2p
β
2Tr

{
σλ

νσλβ

}
(37)

The cross terms in (36) have vanished, as the trace over an odd number of γ-matrices is identically zero.

T 0
eGg

∝ 16
(
p2 · peχ0

)
(p2 · p1) (1 − ǫ) − 12megmeχ0pν

2p
β
2 gνβ

The term proportional to the product of the masses vanishes as p2 = 0 for a gluon. Now since peχ0 = p1+p2,

T 0
eGg

= 4η2
(
N2

c − 1
)
(1 − ǫ) s212 (38)

where s12 = 2p1 · p2. Note that neither the gluino nor the neutralino mass enters explicitly.

4.2 Next to Leading Order

At next to leading order, the gluon decays into a quark-antiquark pair. There is only one diagram for
this process.

4.2.1 Rules

As well as the rule for the gluon-quark-antiquark vertex (see section (2.2.1)), we naturally require the
neutralino-gluino-gluon vertex from the leading order case, as well a rule for the gluon propagator. The
gluon is spin one bosonic, and therefore takes the form

i j i
(gµν)

p2 −m2 + iǫ
δij

4.3 Matrix element and amplitude

The Feynman diagram at NLO is

χ̃0

g̃(~p1,µ )

q,(~p4,j )

q̄,(~p3,i )

(~p3 + ~p4)
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The corresponding matrix element is

M0
egqq̄ = ψeg (p1)

(
−iηδabσµν (p3 + p4)

ν)ψeχ0

(
peχ0

) gµν

(p3 + p4)
2 ū (p3)

(
−igsT

a
ijγσ

)
v (p4) (39)

which, setting meg = mq = 0 and keeping meχ0 nonzero, gives for the amplitude

T 0
egqq̄ = η2g2N

2
c − 1

2
8

[
(1 − ǫ)

(
(s13 + s14)

2

s34
+ (s13 + s14)

)
− 2

s13s14
s34

]
(40)

4.4 Limits

At NLO, the gluon is a propagator, and its momentum is the sum of the momenta of the quark-antiquark
pair. There is therefore no soft limit for this process.

Because the gluino, neutralino, the quark and the antiquark are all potentially massive, we distinguish
the various cases in the following manner: (The neutralino is always massive.)

1. Massless gluino, massless quark-antiquark pair.

2. Massive gluino, massless quark-antiquark pair.

3. Massless gluino, massive quark-antiquark pair.

4. Massive gluino, massive quark-antiquark pair.

4.4.1 Collinear Limits

We begin with the all-massless case. Let p2 = p3 + p4, then the parameterization becomes

s14 = (1 − z) s12

and
s13 = zs12

evaluating

Pg→qq̄ (z) =
1

g2
s

lim
s34→0

(
T 0

egqq̄

T 0
egg

· s34

)

gives

Pg→qq̄ (z) = 1 −
2z (1 − z)

1 − ǫ
(41)

The colour factors have cancelled completely. Catani et al. [13] give the same splitting function.

We consider now the second case. Although the gluino is now massive, the quark-antiquark pair re-
mains massless, and so their emerging collinearly from the gluon corresponds to the standard massless
collinear limit. The NLO matrix element squared with massive gluino and neutralino and massless
quark-antiquark pair reads

T 0
eGqq̄

=η2g2N
2
c − 1

2
8

(
s14

2

s34
+ s14 + s13 +

s13
2

s34
+ 2megmeχ0 −

ǫ s14
2

s34
− ǫ s14 − 2

ǫ s13s14
s34

− ǫ s13 −
ǫ s13

2

s34
− 2 ǫmegmeχ0 + 2 ǫmg

2

)
(42)
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Now to find the splitting function we compute (after setting the parametrization as the massless case),

Pg→qq̄ (z) =
1

g2
s

lim
s34→0

(
T 0

eGqq̄

T 0
eGg

· s34

)

= 1 −
2z (1 − z)

1 − ǫ
(43)

The result is identical as that given in the massless case (41). This is foreseeable upon consideration of
(42). The gluino mass term is not divergent in s34. The quark-antiquark pair emerging from the gluon
collinearly is unaffected by the gluino mass.

4.4.2 Massive Quasi-collinear Limits

For our third case, we require the amplitude for the massless gluino, and massive quark-antiquark pair.

T 0
egQQ̄

=η2g2N
2
c − 1

2

8
(
s34 + 2m2

q

)2
[
s34s14

2 + s34
2s14 + s13s34

2 + s13
2s34 + 4mq

2s14
2 + 6mq

2s34s14

+4mq
2s13s14 + 6mq

2s13s34 + 4mq
2s13

2 + 8mq
4s14 + 8mq

4s13 + ǫ
(
− s34s14

2 − s34
2s14

−2 s13s34s14 − s13s34
2 − s13

2s34 − 2mq
2s14

2 − 4mq
2s34s14 − 4mq

2s13s14 − 4mq
2s13s34

−2mq
2s13

2 − 4mq
4s14 − 4mq

4s13
)]

(44)

Note the change of form of the denominator. This is due to the gluon propagator possessing denominator
(p1 + p2)

2 −m2
g = s34 + 2m2

q, where the Mandelstam variables are defined in the massless way, whereby
sij = 2pi · pj . Since the quark-antiquark pair becomes collinear, and since they are massive, we need to
take the quasi-collinear limit. Because the form of the propagator is different, the massive collinear limit
is defined somewhat differently [13]. After setting s34 ⇒ λ2s34 and mq ⇒ λmq, we calculate

Pg→QQ̄ (z) =
1

g2
s

lim
λ→0

[
T 0

egQQ̄

T 0
egg

·
(
s34 + 2m2

q

)
]

=1 −
2z (1 − z) + 2µ2

1 − ǫ
(45)

where µ2 =
2m2

q

s34+m2
q
. This splitting function reduces to (43) when mq = 0.

In the cases (1) and (2) above (which toggled the gluino mass), the mass of the gluino did not af-
fect the quark-antiquark collinear limit, as the gluino mass appears in the less-divergent terms in the
amplitude. We shall once again test this in our third case, by now including the gluino mass to our
calculations. The amplitude reads
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T 0
eGQQ̄

=η2g2N
2
c − 1

2

8
(
s34 + 2m2

q

)2
[
s34s14

2 + s34
2s14 + s13s34

2 + s13
2s34 + 4mq

2s14
2 + 6mq

2s34s14

+4mq
2s13s14 + 6mq

2s13s34 + 4mq
2s13

2 + 8mq
4s14 + 8mq

4s13 + 2megmeχ0s34
2

+12megmq
2meχ0s34 + 16megmq

4meχ0 − 4meg
2mq

2s34 − 8meg
2mq

4 + ǫ
(
− s34s14

2 − s34
2s14

−2 s13s34s14 − s13s34
2 − s13

2s34 − 2mq
2s14

2 − 4mq
2s34s14 − 4mq

2s13s14 − 4mq
2s13s34

−2mq
2s13

2 − 4mq
4s14 − 4mq

4s13 − 2megmeχ0s34
2 − 8megmq

2meχ0s34 − 8megmq
4meχ0 (46)

+2meg
2s34

2 + 8meg
2mq

2s34 + 8meg
2mq

4
)]

(47)

Taking the quasi-collinear limit, we once again obtain

Pg→QQ̄ (z) =
1

g2
s

lim
λ→0

[
T 0

eGQQ̄

T 0
eGg

·
(
s34 + 2m2

q

)
]

(48)

=1 −
2z (1 − z) + 2µ2

1 − ǫ
(49)

In summary, we have found that cases (1) and (2) yield the same antenna function, and that (3) and
(4) yield the same antenna function. This demonstrates the independence of the splitting function from
the rest of the diagram. The masses of the neutralino-gluon-gluino part of the diagram bear no influence
to the form of the splitting function. The splitting functions Pg→qq̄ and Pg→QQ̄ are unique and depend
exclusively on the subscripts.

5 Gluon-Gluon Antenna from Higgs decay G0
3

We shall now consider the following process whereby a Higgs particle decay into two gluons, and one
of these gluons decays further into a quark-antiquark pair. We shall once again seek to reaffirm the
universality of the quark-gluon splitting functions Pg→qq̄ and Pg→QQ̄ for the massless and massive quark
cases respectively.

The Higgs field couples neither to gluons nor massless quarks at tree level. However, heavy quark
loops at higher orders in perturbation theory give rise to an effective coupling between the Higgs and the
gluon. The Lagrangian mediating this coupling [2] is given by

Lint = −
λ

4
HFµν

a Fa,µν (50)

where Fµν is the QCD field strength tensor. This implies that at leading-order, the Higgs decays into a
gluon pair. At NLO, one of these gluons either decays further into a gluon pair, or a gluon decays into
a quark-antiquark pair. As the focus of this text is the examination of massive antenna, we consider the
latter case only.

5.1 Leading order process

The leading order matrix element is given by
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H

g,(~p1 , ǫ1,µ)

g,(~p2 , ǫ2,ν)

where the Higgs-gluon-gluon vertex is given by iλδab (gµνp1 · p2 − p1,νp2,µ)

The matrix element expression for this process is given by

M0
2 =

1

2
iλδab (gµνp1 · p2 − p1,νp2,µ) ǫ∗µ

1 ǫ∗ν
2

Calculating the amplitude, and averaging over identical gluons in the final state,

T 0
gg =

1

4
λ2
(
N2

c − 1
)
(1 − ǫ) s212 (51)

Note that this is identical (up to constant factors) to the leading order amplitude T 0
egg for the previously

considered process χ̃0 → g̃g.

5.2 Next to leading order

5.2.1 Rules

The rules we require at NLO have been previously used. In addition to the Higgs-gluon-gluon vertex, we
need the gluon-quark-antiquark vertex, and the gluon propagator. (See section (2.2.1))

5.2.2 Matrix element and amplitude

The Feynman diagram is

H

g(~p1, ǫµ)

q̄,(~p4,j )

q,(~p3,i )

(~p3 + ~p4)

With expression

M0
gqq̄ = [gµνp1 · (p3 + p4) − p1,ν (p3,µ + p4, µ)] ·

gνλ

(p3 + p4)
2 · ū (p3) γλv (p4) ǫ

∗µ (52)

The amplitude for the massless quark case is

T 0
ggq̄ = λ2g2N

2
c − 1

2

[
(1 − ǫ)

(
(s13 + s14)

2

s34

)
−
s13s14
s34

]
(53)

The massless amplitude for G0
3 has been calculated by Gehrmann-de Ridder et al. [2], and confirms our

result.
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5.3 Limits

Once again, a soft limit for this process does not exist.

5.3.1 Collinear Limit

We calculate the splitting function from the collinear limit as we did with the E0
3 case. Letting

s14 = (1 − z) s12

and
s13 = zs12

evaluating

Pg→qq̄ (z) =
1

g2
s

lim
s34→0

(
T 0

gqq̄

T 0
gg

· s34

)

gives

Pg→qq̄ (z) = 1 −
2z (1 − z)

1 − ǫ
(54)

here we obtain the expected massless quark-gluon splitting function. This is the same splitting function
as used in the E0

3 antenna with massless quarks (section (4.4.1)).

5.3.2 Quasi-collinear limit

The massive amplitude is

T 0
gQQ̄

=λ2g2N
2
c − 1

2

1
(
s34 + 2m2

q

)2
(
s34s14

2 + s13
2s34 + 4mq

2s14
2 + 4mq

2s13s14 + 4mq
2s13

2

−ǫ s34s14
2 − 2 ǫ s13s34s14 − ǫ s13

2s34 − 2 ǫmq
2s14

2 − 4 ǫmq
2s13s14 − 2 ǫmq

2s13
2
)

(55)

Similarly as with the (3) and (4) massive quark cases in the previous section, we calculate

Pg→QQ̄ =
1

g2
s

lim
λ→0

[
T 0

gQQ̄

T 0
gg

·
(
s34 + 2m2

q

)
]

=1 −
2z (1 − z) + 2µ2

1 − ǫ
(56)

which reduces to (54) when mq = 0. This is also the previously calculated E0
3 splitting function for

massive quarks (4.4.2).

6 Quark-Gluon Antenna from Neutralino decay D0
3

Here we consider the MSSM decay χ̃0 → g̃gg. Since we have already calculated the leading order
expression for this process, namely χ̃0 → g̃g in section (4.1), we can immediately begin with the NLO
case.
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6.1 Next-to-leading order

At NLO, there are four diagrams which produce the same final state over which we need to sum. In the
first and second, the neutralino decays into a gluino and a gluon, and the gluino radiates a gluon. In
the third, the neutralino once again decays into a gluon and a gluino, and the gluon further splits into
two gluons . In the fourth and final diagram, we have a triple quadruple vertex: the neutralino decays
into two gluons and a gluino. The effective lagrangian mediating these interactions (save the triple gluon
vertex) is given by (34).

6.1.1 Rules

We require the neutralino-gluino-gluon vertex, which we have already used 4.1. The required rules
corresponding to each diagram are enumerated below:

1. The MSSM gluino-gluino-gluon vertex:

g,(~p , ǫµ)

g̃,(~p1)

g̃,(~p2)

−gsfabcγµ

2. The well-known QCD gluon triple vertex: [11]

g,(~p3 , ǫ3,λ)

g,(~p1 , ǫ1,µ)

g,(~p2 , ǫ2,ν)

−gsfabc

[
gµν (p1 − p2)λ + gνλ (p2 − p3)µ + gµλ (p3 − p1)ν

]

where the momenta are all flowing inwards.

3. The MSSM neutralino-gluino-gluon-gluon quadruple vertex:

χ̃0

g̃,(~p1)

g,(~p , ǫµ,1)

g,(~p , ǫµ,2) −gsηfabcσµν
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6.2 Matrix element and amplitude

The Feynman diagram for the total matrix element is

g̃,~p1

+ (~p1 + ~p3)
χ̃0

g (~p3, ǫα,1)

g (~p4, ǫβ,2)

g̃,~p1

+ (~p1 + ~p4)
χ̃0

g (~p4, ǫβ′,2)

g (~p3, ǫα′,1)

+

+

5

χ̃0

− (~p3 + ~p4)

g̃,~p1

g (~p4, ǫβ′′,2)

g (~p3, ǫα′′,1)
+

χ̃0

g̃,~p1

g (~p4, ǫβ′′′,2)

g (~p3, ǫα′′′,1)

with expression

M0
eggg =ψeg (p1) (−gsfabcγα) ·

(
i
−/p1 − /p3

+meg

(p1 + p3)
2 −m2

eg

)
·
(
−iηδabσβν (−pν

4)
)
ψeχ0

(
peχ0

)
ǫ∗α
1 ǫ∗β

2

+ ψeg (p1) (−gsfbacγβ′) ·

(
i
−/p1 − /p4

+meg

(p1 + p4)
2
−m2

eg

)
·
(
−iηδabσα′ρ (pρ

3)
)
ψeχ0

(
peχ0

)
ǫ∗α′

1 ǫ∗β′

2

+ ψeg (p1)
(
−iηδabσµκ (−p3 − p4)

κ)
ψeχ0

(
peχ0

)
· i

gµλ

(p3 + p4)
2 ·

gsfabc

[
gα′′β′′ (p3 − p4)λ + gλβ′′ (p3 + 2p4)α′′ + gλα′′ (−p4 − 2p3)β′′

]
ǫ∗α′′

1 ǫ∗β′′

2

+ψeg (p1) (−gsηfabcσα′′′β′′′)ψeχ0

(
peχ0

)
ǫ∗α′′′

1 ǫ∗β′′′

2

]
(57)
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7 Summary and Conclusions

We have considered four processes, and calculated the massive and massless amplitudes for each. The
infrared limiting behavior of the first two cases included both the soft and collinear limits. The massless
and massive soft limits provided us with verification on the NLO matrix element by reducing it to the
LO with the appropriate eikonal factor. Conversely, this reduction confirmed the form of the soft massive
and massless eikonal factors given in the literature. In the construction of the antennae, we calculated
the Altarelli-Parisi splitting functions by taking the collinear (and quasi-collinear in the massive cases)
limits. These were validated with those given in the literature.

The final two cases which we examined, the E0
3 and the G0

3 exhibited no soft limits. This is on ac-
count of the fact that in there were no external gluons in the case of the former; and in the case of the
latter, the soft limit simply does not exist because the corresponding m − 1th process does not exist.
Neither of the gluons in these cases were radiative. While we were therefore unable to confirm the corre-
sponding matrix elements via a soft limit check, we nevertheless assured them with those results available
in the literature. This applied however only to the massless E0

3 and G0
3 cases. The massless amplitudes

and splitting functions were available in the literature. The massive amplitudes and splitting functions
were not.

Our findings pertaining to antenna functions in the collinear limit are summarised in the table below:

Antenna and Process Mass structure Splitting function

quark-antiquark antenna from A0
3 γ → qq̄g mq = 0 Pq→qg (z) = 1+(1−z)2

z
− ǫz

mq 6= 0 PQ→Qg (z) = 1+(z−1)2

z
− ǫz −

2m2

q

s13

squark-antisquark antenna from γ → q̃¯̃qg meq = 0 Peq→eqg (z) = 2z
1−z

meq 6= 0 P eQ→ eQg
(z) = 2z

1−z
−

2m2

q

s13

quark-gluon antenna from E0
3 χ̃

0 → g̃qq̄ mq = 0 , meg = 0 Pg→qq̄ (z) = 1 − 2z(1−z)
1−ǫ

mq = 0 , meg 6= 0 Pg→qq̄ (z) = 1 − 2z(1−z)
1−ǫ

mq 6= 0 , meg = 0 Pg→QQ̄ (z) = 1 − 2z(1−z)+2µ2

1−ǫ

mq 6= 0 , meg 6= 0 Pg→QQ̄ (z) = 1 − 2z(1−z)+2µ2

1−ǫ

gluon-gluon antenna from G0
3 H → gqq̄ mq = 0 Pg→qq̄ (z) = 1 − 2z(1−z)

1−ǫ

mq 6= 0 Pg→QQ̄ (z) = 1 − 2z(1−z)+2µ2

1−ǫ

The equivalence of the splitting functions from different processes demonstrates the universality of the
splitting function. The form of the splitting function depends only locally on the particle types and
properties.
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