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Abstract

In this text I shall explain Tensor-Vector-Scalar gravity (TeVeS), and consider its worth in
comparison to Modified Newtonian Dynamics (MOND) and RAQUAL. I shall attempt to give
the reader an idea of the development of ’MOND’ (Milgrom 1983) and highlight the features
of its maturity into modern-day ’TeVeS’ (Beckenstein 2004). I shall begin by presenting the
need for an extension to gravitational theory from conventional Einstein Gravity. There are two
general directions in which to proceed when regarding the spiral galaxy rotation curve problem.
The first involves the need for the existence of Dark Matter, (on which I will be succinct), and
the other requires a change (or extension) to gravitational theory. This text deals with the latter.
After stating and then briefly explaining the requirements and then the principles (according
to Beckenstein) to which such a theory must adhere, I will discuss six candidate theories in
the chronological order in which they were first proposed, and indeed in the order of increasing
complexity, and accomplishment. A disscusion of the ideas behind MOND will ensue, followed
by RAQUAL, Phase Coupled Gravity, A theory with a disformally related physical metric, and
finally TeVeS. I will continually remark on the successes of these theories, insofar as they fulfill
the previously elaborated requirements and principles for a coherent theory of gravity.
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1 Introduction: Where we stand, and our loss of predictive
power in the astrophysical arena.

Einstein gravity made its debut effectively in 1915, and has been an incredible success for 20th
century physics. The equivalence principle, general covariance, and achievement of reducing gravi-
tational phenomenae to geometry has enjoyed a triumph. While the door was unlocked by Einstein
in 1915, the relatavists of the 20th century truly have opened it and developed the initial theory
a thousandfold, explaining countless astrophysical and cosmological occurences and verifying them
with acceptable degrees of experimental precision.

In Einstein gravity the well-known Einstein-Hilbert action,

SEH =
1

16πG

∫
d4x
√
−gR (1)

gives us the equations of motion of our world - expressing the way in which the curvature of our
universe is affected by matter. The dynamics of how test particles (with or without mass) move
through time, depends on this curvature. In practice this means the following: Given a mass
distibution, we can use the equations of motion of our theory to solve for the metric tensor gµν , and
from that we can find the paths that test particles would follow.

A typical such example of this would be the lensing of light, or how the stars in a galaxy move
around the galactic center. In many cases however, a weak field limit approximation suffices for such
calculations - simplifying the calculations considerably. In the weak field case, the effective potential
that a test particle feels due to a point-like mass is given by

φ = −GM
r

This is indeed equivalent to the Newtonian potential. This approximation is valid for describing the
orbits of many astrophysical bodies. The planets around the sun, the moons around the planets,
the satellites around the earth. For a body in equilibrium, by simply equating the centripital force
with the gravitational weak field force, given by

F =
GMm

r2
,

we can calculate the tangential velocity of the orbiting body. We obtain

GMm

r2
=
mv2

r
(2)

giving for the tangential velocity v ∝ 1√
r
. Note that to do this we have of course assumed the

Newton’s Second Law to be true.

Upon consideration of the data, we find that this law applies well to the aforementioned systems.
Uranus, having an orbital radius around the sun 19 times that of the Earth, does indeed have an
orbital velocity of 1√

19
of that of the Earth. But what about larger scales? We would expect the

same to apply for the stars orbiting the galactic center. It seems however, that our predictive power
suffers a blow at this scale. Indeed the galactic rotation curve does not follow this law. The stars
orbiting the galactic centers are observed to have a constant velocity with increasing distance from
the center. The gravitational force does not fall off with increasing distance as we are used to on
our scales. Something must change. The important question is where do we look? How do we make
a change to avert this. Do we simply not understand galaxies properly - ie, is our understanding
of the system lacking; or is it our model of gravity (or perhaps our concept of inertia) that needs a
makeover?
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Figure 1: This diagram shows the tangential velocity of the stars in a spiral galaxy against their
distance from the galactic center. The dotted curve (A) is what we expect from the Newtonian
(or from the general relativity weak field limit) case. The velocity falls off hyperbolically with the
distance. (Note that the rotation curve is not hyperbolic close to the center, since we are actually
dealing not with a point-like mass system, but with a mass distribution.) The full curve (B) shows
the observed rotation curve. From the galactic bulge onwards, the tangential velocity of the stars
does not decrease with increasing distance from the center.

2 Dark Matter

2.1 Proposal

The dark matter suggestion argues that a substantial quantity of the matter in the universe is
nonbaryonic, that is, invisible. This matter is suspected to be in the form of a massive particle,
which is weakly interacting. This means that any interaction that this particle would have with any
type of baryonic matter exhibits an extremely low cross-section (likelihood of occuring). Thus traces
of particles of this type are extremely hard to detect. Photons for instance, the quanta of energy
which is emitted or absorbed in atomic and nuclear interactions, are detectable by our eyes and our
telescopes. Photons are the footprints of these interactions. Due to the weakly-interacting nature
of dark matter particles, we have little hope of any direct detection of this kind.

The swiss astronomer Fritz Zwicky [13] noted as early as 1933 that the observed mass in the
Coma Cluster was simply too low to be able to account for the fact that the galaxies within the
cluster move in the same potential well - keeping the system bound. This was the first suggestion
that there existed invisible matter that was unaccounted for by direct telescopic observation. Using
the fact that the observed dynamics of the cluster indicated a bound system, he was able to estimate
the average mass within the galaxies to be approximately 160 times greater than what was expected
for their luminosities.

The designation of dark matter particles as weakly interacting is somewhat ambiguous. The
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adverb weakly refers primarily to the low cross section. However, it is also suspected that dark
matter particles interact only via the weak fundamental force. Of course, this is in addition to its
interaction via the gravitational force. (Were it not, dark matter would not concern us in the least
for our purposes.) And because we currently also have no hope of detecting the quantum of the
gravitational force, the graviton, we are forced to look for indirect evidence of dark matter. Namely,
a change in gravitational dynamics of a system which we suspect to contain dark matter. Indeed,
a proposed solution to the galactic rotation curve problem is the dark matter hypothesis. It is
surmised that the matter content in galaxies is actually far greater than what we observe. From
the Tully-Fisher relation, astonomers are able to calculate the mass of a star from its luminosity.
On the galactic scale however, ’summing’ the masses of the stars in a single galaxy does not reach
the suspected mass levels of the entire galaxy. It is believed that the galaxy sits in the middle of a
gigantic halo of dark matter.

2.2 What reasons do we have to believe that the mass of a galaxy is far
greater than what our telescopes tell us?

There are three primary pieces of evidence which support this. The first comes from the theory
of galaxy formation. In order for galaxies to form, massive gas clouds need to cool. Models of
galaxy formation without the presense of dark matter simply have densities too low to be able to
cool quickly enough. The universe is approximately 1010 years old. Galaxy formation theory shows
that without dark matter, pre-galactic gaseous structures would need at least 1011 years to form
into galaxies. Thus, we would not expect galaxies to exist for at least another one hundred billion
years.

Our second piece of evidence comes from weak lensing. Deflection of light by stars is indeed
well predicted by Einstein gravity. However, at the galactic scale, gravitational theory using the
luminous matter as the total mass of the galaxy is unable to account for the observed dynamics.
The lensing of light from stars behind galaxies shows that the lensing of light by such galactic lenses
carries a deflection angle greater than what would be expected from the total mass of the luminous
matter. The question once again arises - is our understanding of the galactic system lacking (do we
need to add dark matter), or is our theory at fault on such scales?

Finally, the third argument for dark matter comes from the galactic rotation curve problem itself.
Were we to add dark matter halos to galactic systems, we find an effective gravitational potential
of the form V ∝ ln r. If we differentiate this with respect to r to find the force, and then equate it
with the right hand side of (2) (the centripital force), we indeed find a constant rotation curve.

Although these arguments contend the case for dark matter within or around galaxies themselves,
there is strong cosmological evidence for the existence of dark matter from cosmological consider-
ations. The dark matter hypothesis is largely accepted by the scientific community to be correct.
Dark matter is indeed strongly built into the theory of structure formation, and is even linked to
inflationary theory. It remains to be understood however, exactly what type of particle this invisible
matter composes. This task we leave to the particle physicists. From an astrophysical perspective,
it is the dynamics of galaxies which interest us - and how to explain them. Let’s leave the dark
matter proposition, and attempt to construct a theory of gravity which would account for the above
phenomenae without invoking dark matter.

3 What kind of features should we expect in a resonable
theory of gravity?

A modification of physical laws that would explain the observed galactic rotation curve is no easy
task. In the formulation of such, we stand to possibly lose key requirements (which need to be
satisfied in order to be taken seriously), and principles (which are intrinsic to any gravitational
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formulation). For instance: a modification that ’fixes’ our problem might well introduce others. We
would require the overall features of such a theory to still contain the bulk of traditional gravity,
so as to keep the previous achievments of gravitational theory ’in-line’ with what we expect. (We
need such phenomenae to not only exist in our theory, but remain unchanged enough - ie reducible
to Einstein Gravity only in a certain limit.) MOdified Newtonian Dynamics (MOND), which we
will consider soon, satisfies some of these requirements while explaining the galactic rotation curve
anomaly.

Beckenstein [4] lists some important requirements to which any theory of gravity should asscribe
in order to be taken seriously. This is essentially a list of phenomenae which have so far been
successfully explained and modelled using conventional theories of gravity. We do not want to lose
these successes.

3.1 Requirements

These requirements essentially force the theory to be Einsteinian at certain scales depending on the
corresponding phenomenon.

• Agreement with conventional theories at extragalactic scales The weak field approximation
should be recovered in the region of low-mass distrubution. We need our theory of gravity to
approach Einstein gravity in a certain low-mass limit, which automatically means we will hit the
Newtonian gravity regime on some further limit.

• Agreement with the conventional phenomenology of gravitational lensing We require the bending
of light by large masses to be present in this theory. We would expect the deflection angles to be
slight departures from those given by Einstein Gravity - perhaps even no such departure in the weak
field limit.

• Agreement with the dynamics of the Solar System An array of measurabe phenomenae in the
Solar System should be predictable by the theory, and should concur with experimental tests. These
include the deflection of light rays, the time delay of radar signals, and the precessions of the perihelia
of the inner planets; all of which are accounted for by Einstein gravity.

• Agreement with binary pulsar tests Binary pulsar systems are used to measure such effects as
relatavistic time-delay, periastron procession and orbit decay due to energy loss via gravitational
radiation. It is in this arena that we test the strong field limit of the theory, and thus the arena in
which we are most likely to see departures from conventional Einstein gravity. Indeed, our theory
will face its toughest challenge here, as the orbital decay of the binary pulsar system PSR1913+16
due to energy loss via gravitational waves has been remarkably well predicted by Einstein gravity.

• Concurrence with cosmological essentials The Friedman equations for this theory should predict
the same cosmological phenomenology that has been developed and confirmed from Einstein gravity.
These include the Hubble expansion, the timescale for various eras, the existence of a microwave
background, and light element abundances from primordial nucleosynthesis which has been strongly
verified by modern cosmological theory.

While this list contains essentially the observable features of the universe which we shun from
losing in our theoretical framework, a theory of gravity needs to comply to the following fundamental
physical principles, that we require to hold true. A theory exhibiting all of the abovementioned
requirements, which does not contain the following principles, can be said to be only an effective
theory - one which has been constructed from the top down, and not the other way round. MOND for
example, is an example of an effective theory, as it is built upon none of these principles. RAQUAL
and TeVeS however, are indeed built from the bottom-up, and so manage to at least partially or
completely satisfy these principles.
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3.2 Principles

• The Action Principle The equations of motion of our theory must be able to be directly derivable
from an Action. This way, we guarentee the conservation laws of energy, and angular and linear
momentum, which we of course require.

• General covariance The equations of our theory must be written in the language of traditional
Einstein gravity. The action must be relativistic so that Poincaré invariance is not lost, and that
when we ’look closely enough’ at any region of our spacetime manifold, we recover Special Relativity.

• Equivalence principle The theory must be metric - the matter or nongravitational (like elec-
tromagnetism, the weak force etc.) laws of physics should be expressible simply by rewriting their
actions by replacing the Lorentzian metric with gravitational one.

• Causality To preserve the logical consistency of the theory, we require that the theory remain
causal. This means that the maximum possible speed of propagation of any measurable field or of
energy and linear and angular momentum is not superluminal. Luminal speed is the speed which is
invariant under Lorentz transformations. Because Maxwell’s equations are invariant under Lorentz
transformations, this luminal speed is the speed of light.

4 Modified Newtonian Dynamics

4.1 Basic Equations

MOND was originally proposed by Mordehai Milgrom in 1981 [1]. The idea presented is essentially
one which directly modifies Newton’s second law ~F = m~a. Indeed, this relation has only been
verified in the high-acceleration regime. Milgrom proposed the following modification:

~F = mµ

(
a

a0

)
~a (3)

where µ is an unspecified function however, with the following behaviour:

µ (x) = x if | x |� 1

µ (x) = 1 if | x |� 1

and a0 is a constant. At normal accelerations, ie when the ratio a
a0

is large, we recover Newton’s
Second Law. However, when the accelerations are small, and the ratio is less than one, we enter the
MONDian regime, in which newton’s second law is essentially stronger than expected. This means
that an applied force yields a greater relative acceleration in the MONDian regime for a body with
a mass m than in the newtonian regime.

The introduction of a change to inertial law of this type serves as to modify the dynamics of a
body orbiting another body so as to flatten the rotation curve. The newtonian gravitational force
is unchanged:

F =
GMm

r2

To find the acceleration, we use our modified second law:

F =
GMm

r2
= mµ

(
a

a0

)
a
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Assuming the equality of inertial and gravitational mass (although admittedly the concept of both
might appear to be rather fuzzy under a modification of Newton II), we obtain

GM

r2
= µ

(
a

a0

)
a

In orbital equlibrium, the gravitational acceleration is equal to the centripital acceleration a = v2

r .
We get

a =
GM

r2

[
µ

(
v2

ra0

)]−1

=
v2

r

It is clear that we recover the standard non-flat, hyperbolic rotation curve at high accelerations.

Let’s assume that we are in the MONDian regime, dealing with low accelerations. This corre-
sponds to

µ (x) =
a

a0
=

v2

ra0

giving for the tangential velocity
v = 4

√
GMa0

In the galactic context, provided we are far enough from the center - ie sufficiently far away such
that the accelerations are low enough, we find a constant rotation curve. In its departure from
the newtonian regime, inertia is weakened, and gravity is seen to be effectively strengthened. This
relation is dependent upon the fundamental constant a0, which sets the threshold at which MOND
takes over. Of course, we expect its value to be extremely low. Were it not, this previously described
consequence would be apparent on scales smaller then the galactic. In his original paper, Milgrom
sets the value of this constant at a0 = 1.2 10−10ms−2.

And so we see that by modifying Newton’s second law, we obtain a result which fixes our original
problem. Equation (3) is however not the starting point to MOND. Indeed, it is the gravitational
potential which deserves to be modified. It is therefore Poisson’s equation which needs to be con-
sidered. The poisson equation gives us the newtonian gravitational potential for an arbitrary mass
distribution.

∇2ΦN = 4πGρ

The appropriate MONDian modification to this equation is

∇ ·
[
µ

(
| ∇ΦM |
a0

)
∇ΦM −∇ΦN

]
= 0

where ΦM is the MONDian potential, and ΦN is the newtonian. The unspecified function µ is
dependent not on a ratio of accelerations a

a0
, but on a ratio of relative forces. The function µ

however retains the same behaviour: µ (x) = 1 for x � 1 (Newtonian limit), and µ (x) = x for
x� 1 (MONDian regime). Let’s consider the MONDian regime:

∇ ·
[
| ∇ΦM |
a0

∇ΦM −∇ΦN

]
= 0 (4)

Now since the divergence of a curl is always zero, (∇ · ∇ × ~ξ = 0)

| ∇ΦM |
a0

∇ΦM −∇ΦN = ∇× ~h

The vector field ~h is unspcecified and unknown, yet null whenever the mass density distribution is
either spherical, cylindrical or planar. In this case, we obtain for the effective MONDian acceleration:

gM = gN

√
a0

| gN |
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where gN is the acceleration corresponding to the newtonian field.

This reformulation of gravitational acceleration has been largely successful in describing the
motion of stars in galaxies and the dynamics of clusters of gravity. As far as predictive power of this
type goes, MOND has been largely successful.

Figure 2: A good agreement between an observed rotation curves and the MONDian law (with
Milgrom’s constant a0 = 1.2 10−10ms−2) for two galaxies.[9]

4.2 Shortcomings and Criticism

Perhaps the foremost reason undermining the credibility of MOND, is the way in which MOND is
built. It is simply an effective theory, modifiying a simple gravitational law in an an hoc manner so
as to produce a desired result: the flattening of the galactic rotation curve. The noun ’theory’ is
certainly no suitable label for such handiwork. No underlying ’reason’ is proposed which would lead
to this change in Newton’s Second Law. The apparent formulation seems languid in justification, and
ambitious in consequence. MOND should not be considered as a theory, but rather as a successful
phenomenological scheme for which an underlying explanation (or theory) is necessary.

The formulation of gravitational theory changed dramatically one hundred years ago: The advent
of the qualities of General covariance, an action formulation, and the inclusion of a dependent
temporal component into the theory. These are central to the construction of a theory of gravitation.
MOND overlooks these themes entirely, jumping straight to the solving of a problem at a ’high level’,
with no regard to these meritable principles. In doing so, it finds itself in troubled waters.

• Intertial vs. Gravitational Law The MONDian modification to Newton’s Second Law fails to
address the question of whether or not the modification is actually a gravitational one, or simply
an inertial. Indeed, the question is irrelevent when considering the acceleration of a body under
in a gravitational field alone. In this case, the final result does not change. Consider however, the
acceleration of a massive charged particle, moving in both a gravitational and electric field. Do we
’extend’ our MONDian modification to apply to the resultant acceleration due to an applied electric
force - effectivly labeling MOND not as a gravitational modification, but rather as an inertial one?

Or on the other hand, do we withold this ’extension’ to the electric force - keeping the modification
in the gravitational term in our equation of motion - resulting in normal motion for charged particles,
no matter their acceleration. The problem is essentially one of ’adding forces’ together in an equation
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of motion. In a multi-body system, in which there is more than one term on the right hand side,
MOND gives no obvious perscription of how to proceed. If the MONDian modification is indeed
inertial - we have no problem. We calculate the acceleration as we normally would. But if forces
beyond just the gravitational act on the body, we are unable to use the standard MONDian law (3).

• Loss of energy conservation The formulation of any theory without an action spells ruin for
conservation laws. Indeed, MONDian dynamics violates conservation of energy, conservation of
momentum, and conservation of angular momentum.

• Loss of GR The successes of the description of a spacetime fabric are all lost. MOND incorper-
ates no metric tensor - the concept of curvature holds no place. This means that all the traditional
successes of General Relativity are lost. The above mentioned requirements are not fulfilled. MOND
is incomplete. Phenomenae such as perihilion precession in non-weak fields, gravitational redshift
and gravitational lensing are unaccounted for.

• Satellites orbiting satellites paradox MOND fails to explain why a MONDian body (a star for
instance orbiting a galactic center) feels the MONDian acceleration, while the star’s components
(gas, orbiting satellits) belong to the newtonian regime. Since these compenents are themselves part
of the galactic system, why do they not share this MONDian acceleration?

These shortcomings should not manifest in disdain towards this theory; rather, MOND should
not be regarded as a theory. The MONDian effect, exhibits results which explain the galactic rotation
curve anomaly. We should indeed use what we have learnt, and attempt to develop a fully fledged
theory of gravity: one which contains not only the Newtonian potential in a weak field limit (as all
theories of gravity do), but one which contains in addition a Newtonian low acceleration limit - such
that the MOND regime emerges. From MOND, we now take the next step towards AQUAL. We
shall build on the previously elabourated upon ideas, and eventually present TeVeS - currently the
most successful ’MONDian’ candidate. We can expect the fomulation of such complete theories of
gravity to be less naive in approach, and more complex in formalism.

5 AQUAL

We shall now begin the construction of our first attempt towards a full reconstruction of MOND.
The starting point for any theory is an action. In this section, I shall rederive the results of the
previous section from an action. Before writing down the action for MOND, we shall consider the
action for Poisson’s equation, and derive the corresponding equations of motion.

5.1 The Poisson Lagrangian

The Newtonian action is:

SN = −
∫
d3x

[
ρφN +

1
8πG

(∇φN )2
]

(5)

we shall work in Einstein notation, with

(∇φN )2 ≡ ∂µφN∂ µφN

To find the equations of motion, we vary with respect to our field, φN . The corresponding equations
of motion are given by the Euler Lagrange equation:

∂µ

(
∂L

∂(∂µφN )

)
− ∂L
∂φN

= 0 (6)

where
S =

∫
d3xL

10



Now
∂L
∂φN

= −ρ

and

∂µ

(
∂L

∂(∂µφN )

)
=

∂

∂xµ

(
1

4πG
∂µφN

)
yielding

∇2φN = −4πGρ

and so from writing down the action, we have thus been able to derive the equation of motion for
Newtonian gravity. Let’s take another step forward, and do the same for MOND.

5.2 AQUAL Action formulation

The action we propose is:

SAQUAL = −
∫
d3x

[
ρφN +

a2
0

8πG
f

(
(∇φ)2

a2
0

)]
(7)

with the function f exhibiting the following behaviour:

f (x) = x =
(∇φ)2

a2
0

for x� 1

(high acceleration ie newtonian) and

f (x) =
2
3
x

3
2 =

2
3

(
∇φ
a0

)3

for x� 1

(low acceleration ie MONDian) This theory has been named ’AQUAL’ from ’AQUAdratic La-
grangian’. Let’s derive the corresponding equations of motion, once again using (6).

∂LAQUAL
∂µφ

= −ρ

∂

∂xµ

(
∂LAQUAL
∂ (∂µφ)

)
=

∂

∂xµ

(
1

4πG
∂µφ

∂f ′

∂ (∂µφ)

)
Acting on the bracket with our differential operator gives two terms. We demand however that the
gradient of the field vanishes on the boundary.

|∇φ| → 0 as x→∞

Thus we arrive at our equation of motion

−ρ =
1

4πG
∂µ∂µφ µ

(
∇φ
a0

)
(8)

where we have made the identification µ (x) = f ′
(
x2
)
, with the unspecified function µ being identical

to the one from the previous section. Since

ρ =
1

4πG
∇2φN

we can rewrite (8):

∇ ·
[
∂µφ µ

(
∇φ
a0

)
− ∂µφN

]
= 0 (9)
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Thus we have reached (4). (9) reduces to the simple MOND formula (3) under cases of high
symmetry. If this symmetry is violated, our dynamics are slightly modified. Using (7) as our Action
ansatz, we have derived the MONDian form to the Poisson equation. We have not done much - simply
reexpressed the previously ideas elaborated upon using an action formulation. In our reevaluation
of the same law, we have managed to procure a worthy principle to our theory: by deriving the
equations of motion from an action, we have assured ourselves that the theory contains the necessary
conservation laws of linear and angular momentum, and energy. These follow from the symmetry
of the lagrangian under spacetime rotations and translations. Linear and angular momentum and
energy arise from these symmetries in the form of Noether currents (which are always conserved),
with which we make the associated identifications.1

Nonetheless, much is still to be done. AQUAL is not formulated with a metric tensor, and
general covariance is still absent. We have not yet attempted to include traditional Einstein gravity
into our formulation. For this, we turn to Relativistic AQUAL.

6 RAQUAL

In the inclusion of Einstein gravity, we are obliged to introduce the metric tensor gαβ , which quantifies
the curvature of space-time, and which uniquely describes the motion of free particles. In Einstein
gravity, the metric tensor is the solution to the Einstein field equations

Rµν −
1
2
gµνR = 8πGTµν

(which are directly derivable from the Einstein Hilbert Action (1)) with a given energy-momentum
distribution encapsulated in Tµν . Our aim is to include the MONDian change, while completely
keeping this Einstein-Hilbert distinctiveness present.

6.1 Extending Einstein gravity

We shall proceed as follows: We introduce a second metric, an effective or physical metric, which
describes the manifold upon which free test particles move. This metric is conformally related to
the above mentioned metric gαβ , which is a solution to the Einsten field equations.

g̃αβ
= e2ψgαβ (10)

By writing our physical metric in this way, and by demanding that the lagrangians of all matter
fields be written using this same metric, we ensure the universality of free fall, and thus the principle
of equivalence. ψ is a real scalar field which we shall use to include the MONDian phenomenology.
This theory therefore contains two fields. The first is a tensor field, ie. the metric tensor gαβ ,
in which traditional Einstein gravity is contained. The second field is a scalar field, which will
incorporate our MONDian ideas. This will be done soon by choosing an appropriate action for ψ.

Let us concentrate on the dynamics of our spacetime. It is in the dynamics that we see the
motion of particles under the influence of gravity. The significance of the metric tensor in describing
the curvature (and therefore the motion through time and space) of the particles is given by the
following action.

Sm = −m
∫ √

−g̃αβdxαdxβ (11)

where m is the mass of the particle. We shall consider the null (massless) case later.

Note that the conformal metric has been used, which depends both on the metric tensor, and
the scalar field. Writing down this action in terms of these variables gives simply

S = −m
∫
eψ
√
−gαβdxαdxβ

1See [10] for the full proof.
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Because the geodesic equation is derived from the variation of (11) with respect to the metric tensor
[8], and then demanding δSm = 0, we can state that particle motion in our theory is geodesic with
respect to g̃αβ . This means that a particle sitting on the manifold described by g̃αβ will move on a
trajectory described by the geodesic equation; only, with the connection coefficients calculated from
the conformal metric. We shall proceed exactly in this manner in order to prove the presence of the
primary MONDian feature (3) in this theory.

6.2 Geodesic behaviour in the Quasistatic limit

The geodesic equation reads
d2x

dτ2
+ Γ̃µαβ

dxα

dτ

dxβ

dτ
= 0

In order to explore the behaviour in the MONDian regime, we consider first the Newtonian limit to
the metric tensor. We decompose the metric tensor into a sum of the Minkowskian part and a small
perturbation.

gαβ = ηαβ + hαβ (12)

In addition, because the velocities we are dealing with are small (nonrelativistic), we consider
the quasistatic case: the movment of a body through time is far ’faster’ than the movement through
space.

dt

dτ
� dxi

dτ

where i runs over the spatial coordinates. This simplifies our geodesic equation to

d2xµ

dt2
+ Γ̃µ00

(
dt

dτ

)2

= 0

The expression for the Christoffel symbols in terms of the metric tensor is given by

Γµαβ =
1
2
gµλ (gλα,β +gλβ ,α−gαβ ,λ )

We need the Christoffel symbols in the conformal frame.

Γ̃µαβ =
1
2
e−2ψgµλ

[(
e2ψgαλ

)
,β +

(
e2ψgβλ

)
,α−

(
e2ψgαβ

)
,λ
]

The components relevant to the quasistatic case are

Γ̃µ00 =
1
2
e−2ψgµλ

[(
e2ψg0λ

)
,0 +

(
e2ψg0λ

)
,0−

(
e2ψg00

)
,λ
]

By demanding that both our fields remain static, the temportal derivatives vanish:

Γ̃µ00 = −1
2
e−2ψgµλ

(
g00e

2ψ
)
,λ

= −1
2
gµλg00,λ−gµλg00ψ,λ

Writing out our metric in terms of the Minkowski plus a small perturbation (12) and dropping the
higher order terms,

Γ̃µ00 = −1
2
ηµλh00,λ−ηµλη00ψ,λ−ηµλh00ψ,λ−hµλη00ψ,λ

Let’s consider the Christoffel symbols corresponding to the spatial components of the geodesic
equation. Using the Minkowski metric to raise indices, we get

Γ̃i00 = −1
2
h,i00 − η00ψ,i − h00ψ

,i − hiλη00ψ,λ
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In our choice of signature, η00 = −1 and ηii = 1, giving

Γ̃i00 = −1
2
h,i00 + ψ,i − h00ψ

,i + hiλψ,λ (13)

It is at this point that we make the corresponding association of hαβ to the newtonian potential.
So that we hit the correct newtonian behaviour when ψ = 0, we make the following identification:
hαβ = −2φN where φN is the newtonian potential as calculated from the Poisson equation. This
means the last two terms in (13) cancel. Finally writing down the spatial components of the geodesic
equation, we are left with

d2~x

dt2
= −∇ (φN + ψ) (14)

Thus our acceleration is modified. This departure from the newtonian acceleration is contained in
our scalar field ψ.

6.3 Implementing the MONDian phenomenology

With the form of (14) in mind, we now consider the field equation for the scalar field itself. We start
with an action ansatz of

Lψ = − 1
8πGL2

f̃
(
L2gαβψ,α ψ,β

)
(15)

Once again we have a function f̃ , whose behaviour is unknown apriori. L is a constant with dimension
of length. In the case f̃ (y) = y, (15) is simply the lagrangian density for a real scalar field. Lψ is
however in general aquadratic.

Let’s consider the case of a point source with physical mass M at r = 0. The corresponding
lagrangian density is

Lψ = − 1
8πGL2

f̃
(
L2 (∇ψ)2

)
− ψMδ (r)

Compare this to the AQUAL lagrangian (7). It is clear that for the same mass M , ψ corresponds
to φ as computed from (9), provided we take f̃ = f and L = 1

a0
. When |∇ψ| � |∇φN | then the

equation of motion (14) reduces to a = −∇φ, and our MONDian phenomenology is recovered. We
have to be careful in the newtonian limit though. In the |∇ψ| � a0 regime, f̃ (y) = y so ψ = φN .
So (14) seems to exhibit an acceleration twice the normal value. This simply means however, that
the measurable newtonian gravitational constant GN is twice that of the constant G which appears
in the Lagrangian density (15).

6.4 Achievments and Inadequacies

So RAQUAL contains, in addition to full Einstein gravity, the appropriate Newtonian and MON-
Dian limits. In moving from AQUAL to RAQUAL we have accomplished much. Our principles
for a coherent theory of gravity are almost completely fulfulled. Our theory is covariant, it has
been successfully formulated with an action, and the equivalence principle holds. One important
(unfortunately intrinsically required) principle is absent: causality. It has been shown [10], [4] that
waves of the scalar field ψ can propagate superluminally. This is essentially a manifestation of the
in-general aquadratic form of the lagrangian.

The array of phenomenae, successfully predicted and measured by Einstein gravity are present in
RAQUAL. The explanation for this is essentially two-fold. Firstly because the recipe for RAQUAL
included the Einstein-Hilbert action, and secondly because the inclusion of the scalar field was done
in such a way so as not to disturb the relativistic (high acceleration, strong field) limit. In hitting
traditional einstein gravity, we are unfortunatly not wholly triumphant. If the MONDian proposition
is correct, and dark matter is not needed to explain the rotation curve flatness, then it means that
mass in galaxies is completely due to baryonic (visible) matter. By the same token, weak field
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lensing deflection should be completly accounted for by this matter. Observations show however,
that the light from distant stars is deflected more that what would be expected by treating the lens
as a purely baryonic object. If the MONDian paradigm is to be taken seriously, deflection increase
of light by the Baryonic matter component of galaxies needs to be explained (or rather included)
into our theories.

7 Progress in theories leading up to TeVeS

In order to solve these last two gripes with RAQUAL, we need to massage our theories further.

7.1 Phase Coupled Gravity

Phase coupled gravity (hereafter PCG) was envisaged in order to resolve RAQUAL’s acausal scalar
field propagation problem. Like RAQUAL, it retains the conformal link (10) between the Einstein
metric and the physical one. Our geodesics therefore remain unchanged with respect to (14), and
thus we recover the MONDian as well as the relativistic limit. (Provided of course, suitable dynamics
for ψ) The change that PCG makes is in the scalar field lagrangian. PCG introduces a second scalar
field A coupled to ψ in the following manner:

Lψ,A = −1
2
[
gαβ

(
A,αA,β + η−2A2ψ,αψ,β

)
+ V

(
A2
)]

(16)

where η is a parameter, and V is a real valued function of the square of the scalar field A which we
have yet to choose. Varying (16) with respect to A yields the equation of motion:

A,α;α − η−2Aψ,αψ
,α −AV ′

(
A2
)

= 0 (17)

and varying with respect to ψ gives(
A2gαβψ,β

)
;α

= η2eψMδ (r) (18)

where we have included a point mass M at the origin.

Field propagation is kept luminal because the first derivatives are only in quadratic form. Note
that the derivative of the function V is with respect to A2. Let’s now specify V and attempt to
recover the sought after MONDian phenomenology. The MONDian limit corresponds to an almost
Minkowski metric, reducing the covariant derivatives to partial derivatives; and a weak ψ. Thus
(17) and (18) reduce to

∇2A− η−2A (∇ψ)2 −AV ′
(
A2
)

= 0 (19)

and
∇ ·
(
A2∇ψ

)
= η2Mδ (r) (20)

The AQUAL phenomenology is recovered for small values of the parameter η. Using the two equa-
tions of motion for our fields, we are able to exactly relate the two scalar fields to one another. Let
us choose an appropriate V, and see how the dynamics unfold. We choose ([4], [7])

∇2A+ V
(
A2
)

= −1
3
ε−2A6

This is a non-linear partial differential equation, coupled in ψ and A. The spherically symmetric
solution to this system is

A =
(κε
r

) 1
2

(21)

and
dψ

dr
=

ηω̄

4κr
(22)
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where
ω̄ ≡ ηM

πε
(23)

κ ≡ 2
3
2

(
1 +

√
a+ 4ω̄2

) 1
2

(24)

Using geodesic equation derived from the conformal (or effective metric) (14), we are able to see
the final result of our MONDian regime dynamics. Substituting our solution for ψ into (14), we
obtain for the radial acceleration

ar = −GM
r2
− η2M

4πεκr
(25)

The first term (25) is φ, our newtonian term, and the second is the effective MONDian term. Thus
the newtonian 1

r2 term vies against a 1
r term. For large enough M (M � 107M�), κ ≈ 1

2

√
ω̄, and

the 1
r force scales with M

1
2 , and begins to dominate when the Newtonian acceleration drops below

the scale

a0 ≡
η3

4πGε
And consequently, we have identified Milgrom’s constant a0 for this theory - the scale at which
MONDian features begin to take over.

In conclusion, we see that PCG retains the primary MONDian features, and due to the dψ
dr ∝ r

−1

form, flattens the galactic rotation curve. Note however that we recover MOND only in the high-
mass regime. This is however perfectly suitable for rotation-curve modelling on the scale of galaxies
or galactic clusters.

TeVeS, the theory which we are working towards, inherits the coupled non-dynamical scalar field
A, and assumes small η, which corresponds to the limit in which A becomes nondynamical. In our
formulation of PCG, we have managed to ensure the subluminality of propagation of all the fields.
As with RAQUAL however, PCG does not explain the increased deflection of light by galaxies. Null
geodesics remain unaffected by the scalar field as the null solutions correspond all to ds2 = 0, which
is invariant in both metric frames due to the form of the conformal transformation.

7.2 Theories with disformally related metrics

In order to solve the under-deflection of light, we have no choice but to modify the relation between
the Einstein and Effective metrics. Because null geodesics correspond to

ds2 = g̃αβdx
αdxβ = e2ψgαβdx

αdxβ = 0

the conformal transformation does nothing to affect null paths. It was therefore suggested [12] to
exchange the conformal relation with a disformal one of the following form:

g̃αβ = e−2ψ
(
Agαβ + BL2ψ,αψ,β

)
(26)

where A and B are functions of the invariant gµνψ,µψ,ν , and L is a constant of units of length.
Assuming that light is metric on the manifold as described by our physical metric, we see that the
scalar field ψ in (26) does indeed play a role in affecting the path of light. Hypothetically therefore,
we would be able to find an appropriate choice for the ψ field lagrangian, which would appropriate
an increase light deflection, as well as reproduce the required RAQUAL/MOND features. It was
shown however, [6], that in order to ensure causality, by demanding the luminal propagation of both
light and gravitational waves, the sign of the function B needs to be changed oppositely to that
required to increase the magnitude of light deflection. Thus theories with disformal relations of the
form (26) are doomed either with too-little-light-deflection or acausality.

A different disformal relation has been suggested [11] which breaks free of this conundrum.
Sanders suggested a disformal transformation of the form

g̃αβ = e−2ψgαβ − 2UαUβ sinh (2ψ) (27)
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where Uα is a constant 4-vector which points in the time-direction. This modification essentially
stratifies the theory - stretching spacetime in preferred directions. The theory is said to hold up
strongly under solar system tests. The problem introduced here however, is that due to the addition
of a preferred direction of Uα, our theory is not frame independant. Theories of the disformal type
bequeath TeVeS the stratification contrivance.

8 TeVeS

Tensor-Vector-Scalar gravity, as the name suggests, incorporates all three types of fields into the
theory. It builds on the ingrediants we have used in constructing the RAQUAL, PCG, and stratified
theories. As with all these theories, an effective metric g̃αβ is present in the theory, which we use
to construct the matter field lagrangians of our theory, and upon whose manifold test particles
move. Like RAQUAL and the successor theories which followed, the deviation from classical general
relativity is contained in this effective metric, which is related in some way to the gravitational scalar
or vector fields included in our theory. With the correct choice of these scalar and vector fields, we
are able to produce the wanted phenomenological features in certain limits, such as the flattening
of the galactic rotation curve, and increased deflection of light by gravitational lenses.

As we have seen, by attempting to procure these features into a theory of gravitation, coherency
is sacrificed. An edifice of snags must be overcome: acausality and loss of general covariance for
instance. In our attempt to retain consistency of our theory under such stringent requirements,
we are forced to massage our theory so as to produce the desired consequences without losing
logical reliability. This massaging generally involves the addition of more fields, witty choices for
lagrangians, and an appropriate relationship between the physical and the einstein metric such that
we achieve the appropriate dynamics for our theory without forgoing consistency. Indeed, TeVeS
continues in this regard with the expected increase in complexity.

8.1 The Action terms

TeVeS’ action consists of four parts:

STeV eS = Sg + Sv + Ss + Sm (28)

The first three terms contain the lagrangians for our gravitational fields, and are thus written in
terms of the Einstein metric. The final term in (28) contains the matter fields of our theory, written
down using the conformal metric. We have yet to specify the relationship betwen the two metrics.

The form of the geometrical part of the action is as we expect:

Sg = (16πG)−1
∫
d4x
√
−gR (29)

where g is the determinent of the Einstein metric gαβ . As with the previous theories, we include
this term in order to keep TeVeS sufficiently close to Einstein gravity.

The term for the scalar field part of the action reads

Ss = −1
2

∫
d4x
√
−g
[
σ2hαβφ,αφ,β +

1
2
Gl−2σ4F

(
kGσ2

)]
(30)

where hαβ = gαβ−UαUβ (Uα is the TeVeS dynamical vector field), F is a free dimensionless function,
analogue to PCG’s potential function V, k is a dimensionless constant, and l is a constant of units of
length. σ is a nondynamical (there is no kinetic term) scalar field analagous to PCG’s A, coupled to
a dynamical scalar field φ. Because there are no kinetic terms for σ, upon variation (6) with respect
to σ, we obtain an equation of motion that directly relates σ to the invariant hαβφ,αφ,β . When we
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substitute this into (30), we obtain an action of the AQUAL form - which produces our MONDian
dynamics. The new term −σ2UαUβφ,αφ,β serves so as to eliminate superluminal propagation of the
φ field.

TeVeS features in addition to a dynamical tensor and scalar field, a dynamical vector field (which
we used in the definition of hαβ) with dynamics given by the following action:

Sv = − K

32πG

∫
d4x
√
−g
[
gαβgµνU[α,µ]U[β,ν] − 2

λ

K
(gµνUµUν + 1)

]
(31)

where K is a dimensionless constant, and λ is not a constant; but a lagrange multiplier which will
enforce a normalization condition on the vector field, namely

gαβUαUβ = −1 (32)

keeping the vector Uβ timelike.

Because all test particles must move on our physical metric, the final term in our lagrangian,
the term which facilitates the inclusion of the matter content to the theory, must be written in
terms of the physical metric g̃αβ . The matter action we obtain in the usual way - by writing the
appropriate matter theory’s lagrangian in flat coordinates, only replacing the Minkowski metric
with the effective metric, replacing partial derivatives with covariant derivatives taken w.r.t. g̃αβ
and multiplying by the Lorentz invariant factor

√
−g̃. This scheme essentially ’smears’ the theory

over the curved manifold described by the metric g̃αβ . For an arbitrary field fα, the general form
of the curvilinear action is

Sm =
∫
d4x
√
−g̃L

(
g̃µν , f

α, fα;µ . . .
)

(33)

Finally, we must state the relationship between the physical and the Einstein metric. The
physical metric in TeVeS is stratified. We obtain it by stretching the Einstein metric in the spacetime
directions orthogonal to Uα ≡ gαβUβ by a factor e−2φ, while shrinking the Einstein metric by the
same factor in the direction parallel to Uα:

g̃αβ = e−2φ (gαβUαUβ)− e2φUαUβ (34)

= e−2φgαβ − 2UαUβ sinh (2φ) (35)

8.2 Equations of Motion

Let’s consider the [4] equations of motion resulting from the variation of the action STeV eS with
respect to the appropriate fields.

8.2.1 Metric equations

The variation of Sg with respect to gαβ gives [8] the left hand side of the standard Einstein field
equation

δSm = (16πG)−1
Gαβ
√
−gδgαβ (36)

where Gαβ denotes the Einstein tensor of gαβ .

The variation of the matter part of the action with respect to g̃αβ yields

δSm = −1
2
T̃αβ

√
−g̃δg̃αβ + . . . (37)

where the ellipses denote the variation of the matter fields, and T̃αβ denotes the physical energy-
momentum tensor given by

T̃αβ = ρ̃ũαũβ + p̃ (g̃αβ + ũαũβ) (38)
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where ρ̃, p̃, and ũα are the density, pressure and four-velocity respectively, all expressed in the
physical metric.

After variation of the metric with respect to the scalar and vector terms in (28), we obtain the
TeVeS analogue to the Einstein field equation:

Gαβ = 8πG
[
T̃αβ +

(
1− e−4φ

)
UµT̃µ(αUβ) + ταβ

]
+ Θαβ (39)

where

ταβ ≡ σ2

[
φ,αφ,β −

1
2
gµνφ,µφ,νgαβ − Uµφµ

(
U(αφ,β) −

1
2
Uνφ,νgαβ

)]
− 1

4
Gl−2σ4F

(
kGσ2

)
gαβ

(40)
and

Θαβ ≡ K
(
gµνU[µ,α]U[ν,β] −

1
4
gστgµνU[σ,µ]U[τ,ν]gαβ

)
− λUαUβ (41)

8.2.2 Scalar field equations

Varying the action w.r.t. σ gives us the relationship between σ and φ,α We obtain:

−kGσ2F − 1
2
(
kGσ2

)2
F ′ = kl2hαβφ,αφ,β (42)

When varying with respect to our dynamical scalar field φ, we must take care - noting that φ makes
an appearence in Sm through the effective metric g̃αβ . We get for the scalar field φ equation of
motion: [

σ2hαβφ,α
]
;β

=
[
gαβ +

(
1 + e−4φ

)
UαUβ

]
T̃αβ (43)

Using (42) we are able to eliminate σ and write (43) in terms of derivatives of φ only, with T̃αβ as
a source term.

Given the form of (42), let us define a function µ (y) by

−µF (µ)− 1
2
µ2F ′ (µ) = y (44)

This gives for (43)[
µ
(
kl2hµνφ,µφ,ν

)
hαβφ,α

]
;β

= kG
[
gαβ +

(
1 + e−4φ

)
UαUβ

]
T̃αβ (45)

We shall use this relation in order to find the behaviour in the MONDian limit.

8.3 Recovering the MONDian limit

We can simplify (45) when we have a symmetry from a collinearity of ũα (which appears in the
definition of the energy-momentum tensor) with Uα. So ũα = eφUα. Thus it follows from (34), that

g̃αβ + ũαũβ = e−2φ (gαβ + Uα + Uβ) (46)

Substituting this into (38) allows us to simplify (45) as[
µ
(
kl2hµνφ,µφ,ν

)
hαβφ,α

]
;β

= kG (ρ̃+ 3p̃) e−2φ (47)

In the static case (assuming the sources do not change through time), we set all the temporal
derivatives in (47) to zero just as we did in the derivation of (14) for RAQUAL. This means hαβφ,α →
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gαβφ,α. The nonrelativistic approximation in addition allows us to replace gαβ → ηαβ and e−2φ → 1.
We assume in addition that the pressure is negligble compared to the density p̃� ρ̃. Thus we obtain

∇ ·
[
µ
(
kl2 (∇φ)2

)
∇φ
]

= kGρ̃ (48)

And considering the form of Poisson’s equation in comparison to (48), we can make an identification
between the newtonian potential and φ.

k−1µ|∇φ| = O (∇ΦN |) (49)

And thus we have obtained (9), the AQUAL limit, only with a suitable reinterpretation of the
function µ.

8.4 Successes

TeVeS is currently the most successful gravitational formulation of MOND. It can be shown [4] that
with suitable choice of the function F , the appropriate general relativistic and cosmological limits
can be reached. These coincide with what we expect. In addition to these successes, TeVeS explains
the increase in light deflection by galactic lenses. TeVeS retains these successes without violating
any of our principles for a coherent theory of gravity. TeVeS is not a preferred frame theory -
TeVeS is fully covariant and has been well formulated in the language of relativity. TeVeS satisfies
the equivalence principle - all non-gravitational forces (matter terms) enter in the matter part of
the action and all move on the manifold whose metric is the effective metric g̃αβ . TeVeS boasts
no superluminal propagation of scalar field, vector field, or gravity waves. These success however,
come at the cost of increased complexity and structure, as well as the addition of three arbitrary
parameters and one function whose values and form respectively depend of the phenomenology we
wish to examine.

9 Conclusions

9.1 Closing thoughts on the MOND paradigm

As a phenomenological scheme for explaining the flatness of the galactic rotation curve, MOND has
been successful. However the principle behind it requires a change to our cherished law of inertia.
This ansatz naturally places us in a precarious position. Indeed, MOND is worthless beyond its
power to absolve the galactic rotation curve predicament. Thus, creative solutions were proposed in
an attempt to reforumlate MOND, and to secure its phenomenological features in a specific limiting
arena of a broader, more complete theory of gravity.

Due to the strict requirements of any modern theory of gravity, the mathematical instruments
behind these creative solutions are indeed more stringent than they are inventive. The scalar and
vector field extensions to Einstein gravity are designed precisely to implement MONDian dynamics,
without violating any dearly-held principle, or upsetting our requirements. There is no physical
meaning or interpretation to any of the scalar or vector fields. It was mentioned earlier that the
MOND law itself (3) is simply an ad-hoc conjuration which serves only to flatten the rotation
curve. In the same way, it should be stated that the underlying action-level characteristics of all the
discussed theories of gravity bring functions and fields into play, whose base physical interpretations
are not apparant. Of course MOND should not be considered to lie on the same logical footing with
its successor theories. Certainly, the addition of such complexity has helped to recast the MONDian
law into a complete theory of gravity, and procured many worth principles. But in terms of physical
motivation of TeVeS’ underlying components, TeVeS has developed MOND no further. The question
of why is never addressed. Of course, we could pass the buck, and say that TeVeS itself belongs to
a limit in a higher, more encompassing theory, which is able to well justify its ansatz. But by itself,
while TeVeS is not an effective theory, it is a well-manipulated one.
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9.2 Dark matter vs. MOND

The convincing argument that Dark Matter makes in astrophysics must be mentioned. From a
theoretical standpoint, the dark matter hypothesis rests on a solid footing in astrophysics and
cosmology. Recently even, experiments have managed to catch up to the theory with considerable
success. Weak lensing on large scales has been successful in mapping out the filamental dark-matter
structure of parts of the sky. Observations of the Bullet Cluster [14] (figures (3), (9.2)), show direct
empirical proof of the presence of dark matter. It has been shown even more recently, that even
TeVeS is unable to account enough to an increased deflection angle in weak lensing. Thus, even
TeVeS requires dark matter.

Figure 3: Nails in the MOND propositions’s coffin: The Bullet Cluster is a collision of two galctic
clusters. The red shaded region shows the baryonic (visible) matter component to the system, as
observed directly from our telescopes. The blue shaded region however, shows the matter distribution
as calculated by the weak lensing of light sources beyond the Bullet Cluster. This shows that there
is a sizable quantity of matter in the bullet cluster beyond the visible. Were the MOND/TeVeS
paradigm correct, the visible matter would be total matter contribution.[14]
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Figure 4: The bullet cluster with the black to white colours indicating the density distribution of the
visible matter, and the contour lines indicating the matter density distribution as calculated from
weak lensing.[14]
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