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Foreword

This dissertation is about testing gravity. The simplest gravitational theory we have which manages
to successfully account for all gravitational phenomena we’ve encountered is general relativity, so
this is what tests of gravity through observation should be compared with. General relativity was
conceived one hundred years ago. Since then, our grasp of the equations and their consequences
have grown faster than we can test them in nature. While the weak-field consequences of gravity
outside compact sources are well understood, tests for features beyond the leading-order remain
imprecise or missing. The ultimate testing ground for gravity is the space-time in the vicinity of
a remarkable entity predicted by general relativity - the event horizon of the Black Hole. Yet it’s
curious that even though the notion of a Black Hole has been part of collective gospel for decades,
we’re not yet close to imaging one, let alone had nature provide us with direct clues as to the
principles which govern its nature. Now, telescopes like the VLT in Chile, and Keck in Hawaii
take us to the outskirts of the space-time surrounding what is most likely a supermassive black
hole in the centre of the Milky Way. This is a window into the strongest gravitational field ever
observed, and so a fantastic playground in which to subject tests of the theory of general relativity.
Whatever the truth may turn out to be, the work herein will play a small role in building the
bridge between gravitational theory, and gravity in nature.

A large part of the first chapter to this dissertation makes up a paper which is under review. The
subject matter turned out to be quite encompassing of my work as a whole, and so we felt it
would make a sound introduction to the papers which follow. I have appended these papers not
in chronological publishing order, but rather in the order in which they ought to be read.

Except for the next sentence, I have decided that you will find no acknowledgments anywhere.
This because each of you around me over the last three years who have played a role in my life are
aware of it, and to you I extend great appreciation.

These pages omit a textbook-styled introduction to general relativity. A few pages of such would be
too many, and many pages too few. General relativity has been around long enough (and unchanged
enough) for time to spawn multiple adequate introductory texts, to which I refer enthusiastic
readers. Instead, I will delve straight into what relativity decrees for our particular testbed - the
galactic center S star system. Also, this way it will be less boring.
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Summary

Through the monitoring of stars and pulsars on orbits around Sgr A*, the metric in the vicinity
of the black hole can be measured by way of stellar redshifts or pulsar timing. These orbits are
ballistic trajectories which probe gravitational physics in the strongest field yet observed. I treat
each orbit as a clock falling in the Kerr geometry, which emits ticks in equal intervals of proper
time. These tick signals propagate on the same space-time until they reach the observer. The
resulting observable is the pulse coordinate time-of-arrival, whose derivative with respect to the
proper time of emission is simply the redshift of a spectral line. Using this consolidated approach
to redshift and pulsar timing, I investigate Schwarzschild effects, as well as high-order Kerr signals,
which include spin and spin-squared effects. I address remarks made in the literature linking
such experiments to tests of the no-hair conjecture. If general relativity is correct, then geodesic
tests of relativity in the Solar system and in binary pulsar systems probe the same metric as
galactic center tests do. However, because the fields are far stronger yet the orbits longer, the
relativistic observables expected from Sgr A* orbits are not simply scaled-up versions of the classic
tests. Transient phenomena on the orbit, signal propagation delay, gravitational time dilation
and higher-order effects are among those neither observable in solar system nor on binary pulsar
systems. This dissertation highlights the properties of redshift and time-of-arrival curves that
emerge due to general relativity in the strong field yet still, long-period regime that S stars and
S pulsars inhabit. Along with each effect, I will give an idea as to the observational capabilities
necessary to resolve these signals. Finally, I will briefly present a wavelet-based method which aims
to detect relativistic signals when shrouded by perturbations due to an extended mass system.

Zusammenfassung

Durch die Beobachtung von Sternen und Pulsaren auf Umlaufbahnen um Sgr A* kann die Metrik
in der Umgebung des schwarzen Loches über stellare Rotverschiebungen oder Messung der Ankun-
ftszeiten von Pulsarsignalen gemessen werden. Die Umlaufbahnen dieser Objekte sind ballistische
Trajektorien die Gravitationsphysik im bisher stärksten je beobachteten Feld prüfen. Im Rahmen
dieser Doktorarbeit wird jede Laufbahn als eine in der Kerrgeometrie fallende Uhr behandelt, deren
Ticksignale in gleichen Eigenzeitabständen ausgesendet werden. Diese Ticksignale propagieren
auf derselben Raumzeit bis sie den Beobachter erreichen. Die sich daraus ergebende Beobach-
tungsgrösse ist die Pulsankunftszeit, deren Ableitung nach der Emmisionseigenzeit die Rotver-
schiebung einer Spektralinie ist. Mit diesem kombinierten Vorgehen werden Schwarzschild-Effekte
sowie Kerr Signale höherer Ordnung , die Spin und Spinquadratterme einschliessen untersucht.
Auch wird auf die in der Literatur zu findenden Behauptungen eingegangen, die das no-hair The-
orem mit Spin-Experimenten zu testen versucht. Wenn die allgemeine Relativitätstheorie korrekt
ist, wird durch geodetische Tests Relativität im Sonnensystem wie auch im galaktischem Zentrum
dieselbe Metrik geprüft. Da die Felder im galaktischen Zentrum allerdings viel stärker sind, die
Umlaufbahnen jedoch länger, sind die erwarteten Beobachtungsgrössen von Sgr A* Umlaufbahnen
nicht einfach hochskalierte Versionen der klassischen Tests. Kurzzeitige Phänomene auf der Lauf-
bahn, die verlangsamte Ausbreitung von Signalen, Gravitationszeitdilatation und Effekte höherer
Ordnung sind weder im Sonnensystem noch in Binärpulsarsystemen beobachtbar. In dieser Dok-
torarbeit werden die Eigenschaften von Rotverschiebungs- und Ankunftszeitkurven untersucht, die
von der allgemeinen Relativität im Regime starker Felder und langer Umlaufzeiten verursacht
werden, in dem sich die S-Sterne und S-Pulsare befinden. Schliesslich wird eine Wavelet-Methode
vorgestellt, mit der relativistische Signale ausfindig gemacht werden können wenn sie von Störungen
durch eine erweiterte Massenverteilung überlagert werden.
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1.1 Clocks around Sgr A*

A clock is a recurrent natural physical process with an unchanging period. At least, so claims our
intrepid experimentalist Bob, with clock in hand. To our observer Alice, watching from a different
frame, the clock frequency may change. In the absence of gravity, the frequency depends on the
relative motion of the clock and the observer, and is constant, unless Bob and his clock accelerate1.
Enter gravity, and Bob, falling-freely with his clock, must accelerate. If the clock is far enough
away from the source of the gravity field, and if the trajectory is bound, then the orbit will be
elliptical. Each time Bob’s clock ticks, he broadcasts the fact to Alice. Monitoring from afar, she
takes a counter and her own clock, and records when she sees the signal flashes. She finds that the
light flashes arrive at a sinusoidal rate, corresponding to Bob’s orbital period. She soon realizes,
that using some laws first written down a few centuries ago, she is able to estimate the mass of
the gravitational source. If this was everything to be learned though, physicists like Alice and Bob
could have packed their bags a century ago. Urging our tick-counting physicist to stay on, and
modestly changing our example, things will begin to get interesting. For this to happen, either
Alice needs a more accurate way of making measurements, or Bob and his clock must be on an
orbit which take them closer to the source of the gravity. Then, our persistent physicist will begin
to notice remarkable deviations from the sinusoidal rate. Were she unfamiliar with gravitational
time dilation, she might be bewildered to notice that even after taking Bob’s speed into account,
the closer he is to Sgr A*, the longer she must wait between ticks. The surprises will continue.
Further upping the capability of her timer, she will realize that her tick-curves don’t quite fit with
an elliptical orbit. She will conclude that for things to make sense, the orbit must be precessing.
Additionally, she will notice curious transient perturbations to what she expects — Bob’s clock
speeds up and then slows down before and after pericenter passage. Things still don’t fit however,
until Alice grasps that not just the orbiting clock, but the very signals which carry the ticks from
the clock to her, are subject to the whims of the gravitational field - as the tick-signals propagate
past the gravitational source, their trajectories bend. This plays a role in further lowering the
observed tick frequency. Figure 1.1 shows an example of what Alice might see. Ahead of her still
lie many more remarkable findings. One of the most exciting of these discoveries is that if she
observes a clock closer still to the gravitational source, she will probably realize that not just the
mass, but the angular momentum of Sgr A* plays a role in setting the gravitational field. Armed
with the particulars of gravitational physics in the vicinity of a black hole, Alice will find herself
in good stead to test fundamental theories of gravity.

1This clock has some kind of rocket booster attached.
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Figure 1.1: An observer watches a clock which, in its rest frame, ticks 1000 times every second.
This clock is falling freely on an eccentric orbit around a source with nonzero spin. The
trajectory has semi-major axis ∼ 1000rg, and distance of closest approach ∼ 100rg,
where rg is the gravitational radius of the source, in this case, a ∼ 4 · 106M� black
hole. The eccentricity is 0.6, and the orbit is inclined with respect to the line of sight
by 45◦. In this regime, the tick rate for the relativistic orbit is quite different from the
newtonian tick rate. The orbits of both clocks are made to coincide at τ = 0. Relativity
changes both the clock’s orbit, as well as the paths that the signals take to reach the
observer.

The preceding paragraph is, needless to mention, a thought-experiment of the milliparsec region of
the Galactic center, home to a compact mass of ∼ 4 · 106M� at Sgr A*, and a population of stars
which orbit it at speeds up to a few percent of light, as shown by astrometric and spectroscopic
observations (Schödel et al., 2002; Gillessen et al., 2009b,a; Martins et al., 2008b; Eisenhauer et al.,
2003; Eckart et al., 2005; Eckhart et al., 2005). Dozens of these ‘S’-stars have been observed and
it is expected that many more thousands of stars, as-yet undetected, orbit the central black hole.
Stars carry excited atoms, whose electrons interact with the electric field. These transitions have a
natural frequency which is equal to that of the electric and magnetic waves produced. Because stars

3



are home to a bath of atoms, each allowing potentially multiple transitions, each corresponding to
a spectral line, a star is a freely-falling ticktock. The redshift of these lines for some of the S stars
has been measured, and astrometric monitoring of these stars has also been done (Eisenhauer
et al., 2003; Gillessen et al., 2009a). See figures 1.2 and 1.3. Spectroscopic accuracy of ∼ 10km/s
has been reached for some of the S stars, and is expected to improve with the next generation
of instruments. But still, due to the breadth of the spectral lines, and the power of modern
spectroscopy, accurately measuring the position of these lines is limited in comparison to pulsar
time-of-arrival measurements. The tick rate of a pulsar is its rotational frequency, and they boast
an incredibly large moment of inertia. Pulsar-quakes and spin-slowdowns aside, pulsars are ideal
clocks. Pulsars have not yet been discovered on short-period orbits around Sgr A*, but population
models argue that there should be a small handful of observable pulsars with periods < year.
(Cordes and Lazio, 1997; Pfahl and Loeb, 2004; Macquart et al., 2010; Kramer et al., 2000)
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Figure 1.2: Best-fit orbits of the galactic center S stars from Gillessen et al. (2009b). S2 is the
most relativistic orbit, reaching an angular pericenter distance from the black hole of
∼ 0.12′′, or 2800 gravitational radii. The observed S stars are extremely bright, and
typically belong to the OB spectral class. Future observations are expected to further
crowd this plot, as less luminous stars become visible to our telescopes.
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Figure 1.3: An example of an integrated observed spectrum of an S star from Martins et al.
(2008a), in this case S2. This spectrum was measured with the Spectrograph for
Integral Field Obervations in the Near Infrared (or SINFONI) of the European South-
ern Observatory’s Very Large Telescope (VLT). The sharpest feature in this NIR K-
band (2.0−2.4µm) spectrum contains the hydrogen Brackett-γ 2.16µm absorption line,
present in early B-type stars.

Testing relativity in the Galactic center through monitoring the S Stars has been extensively
discussed in the literature. The effect of gravitational time dilation on S Star redshifts has been
addressed by Zucker et al. (2006), and Angélil and Saha (2011). General relativistic periastron
precession has been discussed in Rubilar and Eckart (2001); Preto and Saha (2009), and Kannan
and Saha (2009). Depending on the orbit size, perturbations due to the extended mass are expected
to obscure relativistic signals, and is discussed in Rubilar and Eckart (2001); Sabha et al. (2012);
Merritt et al. (2010) and Sadeghian and Will (2011). Relativistic effects on light paths has also
been treated by Bozza and Mancini (2009) which calculates astrometric shifts due to lensing, and
by Angélil and Saha (2010) and Angélil et al. (2010), which consider light path effects on S Star
redshifts. Galactic center pulsars have been considered as probes of strong-field gravity. Liu et al.
(2012) simulate pulsar timing on ∼ 0.3yr orbits, and attempt to include high-order spin effects,
although include neither transient effects nor higher-order propagation delay. Angélil et al. (2010)
includes both, although showcases relativistic redshift effects explicitly, as opposed to pulsar timing.
In this thesis, I include all relativistic effects yet considered, and due to the elegant relationship
between the two, apply them simultaneously to redshift measurements as well as pulsar timing. I
will highlight transient relativistic orbit effects in particular, as well as higher-order spin effects on
both orbits and signal propagation.

I take the ‘clock’-approach to galactic center tests of general relativity. Clocks orbit Sgr A*, and
we, observers at infinity, count the ticks. Each measurement of a ‘tick’ made on Earth at an arrival
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time ta, has an associated proper time of emission τe. For pulsar flashes, if I mark the local time
at which each pulse comes in, the observable is τe (ta) . For the case of a star, the observable is the
frequency of a spectral line, and is the derivative,

ln νobs (ta) = K − ln
dta
dτe

(ta) , (1.1)

where K is a constant which depends on the laboratory line frequency, plus the relative line-of-
sight solar-Sgr A* velocity. Revisiting Fig. 1.1 in this light; the curves can be interpreted as the
frequency of a ‘line’ with intrinsic frequency 1000Hz.

In this thesis, I am not interested in the clock position on the sky, although a complete analysis
could include astrometric information if available. The primary purpose of this exercise is to
highlight what can be expected from timing curves from pulsars, and redshift curves from stars,
both on short-period orbits around Sgr A*, under the effects of relativity. The E-ELT and the SKA
are among the next generation of telescopes expected to discover clocks closer in to the black hole.
The closer they are, the more the relativistic effects are expected to prevail over perturbations due
to the other masses. It is these such < yr-period orbits I we focus my attention on. By performing
numerical calculations, I intend to give a straightforward idea of what effects can be expected from
the zoo of weak-field Kerr relativistic metric terms.

The galactic center system is set apart from other relativistic testbeds by the comparatively long
orbit periods. Tests of relativity carried out so far which involve a timelike trajectory, rely on
the build-up of a perturbation over many orbits. There are effects associated with each metric
component which are transient - in that they do not accumulate. For example, the presence of
the metric term which precesses Mercury’s orbit does more than just that; among other things, it
induces a slight speed-up and then slow-down around pericenter from what Keplerian dynamics
expects. Integrated, they cancel out. To measure a relativistic metric term on a relativistic binary
pulsar, we wait for it to impart a cumulative perturbation which is allowed to build-up over many
orbits. The before-and-after best-fit instantaneous Keplerian elements can then be differenced,
which reveals something about the sought-after metric term. To measure the same metric term for
an S star, a similar strategy would not only be impractical, but unnecessary. An experiment which
provides sufficient accuracy can be sensitive to far more than just the cumulative perturbation on
the orbit due to any particular metric term. In principle, the metric components as functions of
r and t could be inferred, and not just a single integrated quantity. In the coming sections I will
solve the equations and show the difference that the inclusion of transient effects makes.

In the next section, I will briefly review metric tests of gravity already performed. In Section 3, I
will review the equations of motion of the trajectories in the weak-field Kerr geometry, and take a
look at some of the relativistic effects that manifest on the orbit. Next, I will turn to the observable
- the tick-rate curve, which can be calculated by broadcasting the signals from the clock’s orbit
to the distant observer. Each ‘tick’ and subsequent ‘tock’ of the clock happen in equal intervals
of proper time. These signals propagate on the same metric as the clock itself, and by arriving at
the observer, the time-of-arrival between successive ticks is known. When interested in the shift of
a spectral line instead, I can simply take the derivative (1.1). Section 4 addresses remarks in the
literature regarding what galactic center tests of relativity can tell us about multipole moments
and the no-hair conjecture.
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1.2 Geodesic tests of General Relativity

The starting point when solving a relativistic system typically involves a metric solution to the
gravitational field equations. Because no geodesic experiments test physics in the vicinity of the
event horizon yet, the field is weak, and so the metric components may be expanded about infinity.
The leading-order terms give the newtonian features, and the higher-order ones relativistic pertur-
bations whose coefficients are set by the theory of gravity. Tests of relativity try to determine the
values these coefficients take. These experiments test gravitational physics insofar as they probe
the metric - not the field equations. This is especially true in the weak-field. One can conceive
of modifications, of say, to the Einstein Field Equations which drastically modify the geometry
around a spinning source from the Kerr solution, yet still manage to keep the weak-field parame-
ters identical to the Kerr ones up to a certain order2. By inferring the components of the metric
by looking at their effects on the behavior of geodesics or the parallel transport of vectors, we
implicitly test another central aspect of relativity: the essential notion that motivate them, the
principle of equivalence.

The galactic center S star system is a laboratory in which relativity can be tested by measuring
the paths that freely falling bodies make around an isolated source. Such are Solar system tests
of relativity, albeit in far weaker fields. In this thesis, the values for the expanded coefficients take
on the Einstein values.

• Gravitational time dilation

One of the basic consequences of the equivalence principle is that a clock in a strong gravi-
tational field ticks more slowly than one which isn’t. Time is dilated by a factor

g
−1/2
tt = 1− 2GM

c2r
. (1.2)

GPS satellites are sensitive to this shift and take it into account in order to function accu-
rately.

• Light deflection The deflection angle of a null ray is

∆φ =
4GM

b
. (1.3)

The extra-delay induced in the arrival time of a packet of light compared to had it travelled
in a straight line is called the Shapiro delay (Shapiro, 1964), and has been well-tested in the
solar system(Shapiro et al., 1968) and in binary pulsar systems(Stairs, 2003).

• Leading-order precession Another of the classic tests of relativity is the weak-field pre-
cession, and is due to the first perturbation after the Keplerian. These higher order terms
shift Mercury’s perihelion by

∆ω =
6GMπ

L
/revolution, (1.4)

where L = a
(
1− e2

)
is the orbital angular momentum. This type of precession has also been

measured on binary pulsar systems.

2In fact, by keeping in mind that we are probing the metric, and not the field equations, the conclusions of our
tests are permitted to entertain the possibility that Sgr A* might not even be a black hole.
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• Precession due to spin The Einstein Field equations admit an axially symmetric vacuum
solution; in which the spatial part of the metric becomes oblate spheroidal. The oblateness
of the metric can be parametrized by s, the spin parameter. Effects due to the now-nonzero
dtdxi metric components are attributed to frame-dragging, and are proportional to the spin
parameter. A frame-dragged geodesic experiences a tug in the spin direction. As a perturba-
tion to a Keplerian orbit, if the spin is the same direction as the orbital angular momentum,
the cumulative part of this tugging manifests as a retrograde precession of the orbit - both
in the nodal angle and the argument of periapsis. This precession is equal to

∆φ = −κGMπ

L3/2
/revolution, (1.5)

where κ is a constant which depends on the axiality of the metric. If (1.5) is derived from
the Kerr metric, then in the asymptotic region r →∞, it can be shown that κ is related to
the angular momentum per unit mass, namely κ = 8s ≡ 8J/M(Kerr, 1963; Weinberg, 1972;
Misner et al., 1973). On the other hand, if using frame-dragging induced precession as a test
of relativity, s, is simply absorbed into κ, and becomes nothing more than a parameter to be
measured. Without a model, the angular momentum of a black hole cannot be inferred.

Using laser ranging to accurately determine the orbit of the Lageos satellites, this spin-
induced precession (1.5) is claimed to have been measured (Ciufolini and Pavlis, 2004; Iorio,
2010). The recently launched LARES satellite aims to measure the effect to an accuracy of
1%(Ciufolini et al., 2009).

The square of the spin parameter also enters the metric, in the dt2 and dxidxj components. As I
shall show, in the weak-field, spin-squared effects enter the dynamics of timelike trajectories one
order higher than frame-dragging. As such, experiments so far have been sensitive to the latter
and not yet the former. s2-dependent effects have not yet been detected.

Each of the timelike effects mentioned here is cumulative, and are each due to one (or more) metric
terms. These terms impart transient effects also, whose inclusions are unnecessary for solar system
tests. Short-period galactic center stars and pulsars will be sensitive to all the relativistic effects
mentioned here, along with their transient complements, as well as a plethora of higher-order
effects, detailed in the coming sections. The abundance of new relativistic observables which will
be available through monitoring S stars and S pulsars is such that most of these phenomena have
remained unnamed.

It ought to be mentioned there is a way to find the metric components around a source in the
weak field not by looking at the trajectory of the geodesic, but rather at how a vector attached
to a geodesic is parallel transported. The parallel transport of a vector depends on the connection
coefficients and therefore the metric. A vector attached to a satellite on a circular orbit moves by
an amount (Fließbach, 1990)

∆φ =
3GMπ

r
/orbit. (1.6)

Gravity probe B has measured this effect, sometimes called the geodetic effect (Everitt et al., 2011).
The parallel transport of a vector along a geodesic is also influenced by frame-dragging. This is
called the Lens-Thirring effect, and was also detected by gravity probe B. (Everitt et al., 2011).
Galactic center orbits will likely not be sensitive to effects of this nature. However, it’s possible
that the spin axis of a pulsar be parallel transported enough to change the pulse profile.

In the next section, I will look at the orbits of massive particles around the galactic center black
hole. I shall force the weak-field metric parameters to those expected from the Kerr metric. Were
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I solving the inverse problem, these coefficients could be replaced by arbitrary parameters, to be
inferred through data fitting.

1.3 Relativistic time delays and redshifts

As in Angélil and Saha (2010), I use Hamiltonians to describe geodesics. The effects from the
various terms are more easily interpreted when the Hamiltonian is written in Boyer-Lindquist
coordinates, and so this is where I begin: taking the metric inverse, all freely-falling trajectories
have Hamiltonian

H =
1

2
gµνpµpν , (1.7)

with pµ = (pt, pr, pθ, pφ). Working in the weak-field enables us to toggle effects more easily. I shall
make an expansion in r−1 around infinity, and so must be mindful of how the momenta behave
with r. This dependency changes whether the trajectory is timelike (for stars or pulsars) or null
(signal propagation). Of all the terms to pop out, because we’re interested in those that depend
on the square of the spin parameter, I truncate my series at the order at which they first feature.
Table 1.3 breaks the Hamiltonian up order-by-order for timelike and null paths.
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(
p2r sin2 θ

2r4
− p2θ cos2 θ

2r4
−

p2φ
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+
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r3

)
− 4p2t

r3
not included

Each Hamiltonian term gives rise to effects on the orbit as well as on the signal propagation
paths. These affect the observed light frequency and the times of arrival of pulsar flashes. The
scaling relation for the timing delay of clock signals for each term is given in the boxes. For the
orbit, the leading-order (or Keplerian) delay is simply ∼ orbit size, or P 2/3. Enter relativity, and
each pr, pθ/r and pφ/r contribute a factor ∼ P−1/3. The leading-order signal propagation effect
is simply photons on a Minkowksi metric - meaning the signals do not propagate instantly. The
corresponding delay from this is the time the light takes to cross the orbit, or, the Rømer delay ∼
orbit size. For the higher-order effects, each pθ and pφ contribute a further P 2/3.

To get the redshift residual for each effect from the timing residual, I simply take

∆z =
∆t

P
. (1.8)

While exploring the effects that these terms give rise to, I split the Hamiltonians each into three
parts,

Hclock = Hsch +Hs +Hs2 , and Hsignal = Hsch +Hs +Hs2 , (1.9)

no spin dependence, spin-odd, and spin-even.
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It is convenient to be able to set the black hole spin direction without having to rotate the observer
and the orbit. However, the Kerr geometry in Boyer-Lindquist coordinates necessarily aligns the
axis of symmetry of the coordinate system with the axis of symmetry of the space-time geometry
itself, and it is therefore not possible to disentangle the preferred direction of the coordinates with
that of the spin in these coordinates. So, I first canonically transform the Hamiltonian to cartesian
coordinates, and then generalize the spin direction. I make the transformation

xµ = (t, r, θ, φ) −→ (t,x) (1.10)

pµ = (pt, pr, pθ, pφ) −→ (pt,p) . (1.11)

Under the generating function

S = r sin θ cosφpx + r sinφ sin θpy + r cos θpz, (1.12)

the canonical momenta in the two bases are related by

pr ≡ ∂S

∂r
=

x · p
r

, (1.13)

pφ ≡ ∂S

∂θ
= (x× p)z , (1.14)
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=

−1√
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(
z
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)2
(
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r

)
. (1.15)

Inserting these into H, I have the Hamiltonian in Cartesian coordinates.
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To generalize the spin direction I need to promote the scalar s to a 3-vector s. Because the Kerr
metric in Boyer-Lindquist coordinates aligns the spin direction along the axis-of symmetry of the
coordinate system, the spin points in the z−direction. Written in the cartesian basis, I generalize
it to s = (sx, sy, sz). For simplicity’s sake, I set the spin maximal, |s| = 1.

Moving from the z−direction to the s−direction, the frame-dragging term (1.19) becomes

−2ptp · (s× x)

r3
. (1.20)

The spin-squared terms, slightly more complicated are

Ê

p2t
r3
s2⊥, (1.21)

Ë

1

2

s2⊥
r4

(x · p)
2
, (1.22)

Ì

−1

2

1

r4
1− s2⊥
1− s2‖

(
(p · s) r − (x · s) (x · p)

r

)2

, (1.23)

Í

−1

2

1

r4
(p · s× x)

2

s2⊥
, (1.24)

with

s⊥ ≡
s× x

r
and s‖ ≡

s · p
r
.

Using these expressions I can integrate the associated Hamilton equations and find the orbits of
timelike trajectories in the weak field Kerr geometry with arbitrary spin-direction. Figures 1.4,
1.5 and 1.6 show what the relativistic terms Hsch, Hs, and Hs2 respectively are capable of doing,
each as perturbations to Keplerian orbits. Time axes in these plots represent the coordinate time
of a distant observer, which has been integrated over proper time, along with the star’s 3-position
and 4-momentum. The independent variable here is the proper time, or, the time that the clock
reports to an observer falling with it.
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Figure 1.4: This orbit has eccentricity 0.9, and a semi-major axis of 1.6mpc (or ∼ 8.8 · 103 gravi-
tational radii), essentially the star S2, albeit pushed in by a factor of three. Here we
view it face-on. The inclusion of Hsch in the dynamics perturbs the orbit from that
of an ellipse. The almost-staircase curve is the instantaneous argument of pericenter
evaluated at each point on the orbit. Naturally, relativistic effects are strongest at
pericenter, at which time the perturbation imparts the most influence. The cumulative
portion of the perturbation culminates in a prograde precession of ∼ 0.7◦/revolution,
as estimated by the straight dashed line (1.4). The rosetta shape the orbit traces out is
barely visible in the left panel. Note the curious behavior of the instantaneous angular
element ω around pericenter. The information contained in this perturbed staircase
is more valuable than that contained in the cumulative portion alone. After yet more
orbits, the two curves diverge due to higher-order cumulative effects due not only to
higher order dynamical effects at Hsch ∼ O

(
r−2
)
, but also due to the higher order term

in Hsch ∼ O
(
r−3
)
. For the analytical cumulative line to account for this and keep it

from drifting, equation (1.4) would need to be modified with terms ∼ L−2. Although
technically, if in this regime, the leading order contributions Hsch and Hs2 would also
have to be included.
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Figure 1.5: The orbital effects due to the spin term - Hs - as a perturbation to a Keplerian orbit.
The orbit is the same as that in Fig. 1.4., albeit further pushed in by a factor of 10, so
as to keep the cumulative precession per orbit approximately the same. The black hole
spin is maximal, and points perpendicular to the orbital plane. Were the spin direction
not perpendicular to the orbital plane, we would see orbital plane itself also precessing
about the spin axis.
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Figure 1.6: Here we look at the s2 perturbations to a Keplerian orbit. To make them visible, I
have scaled the orbit size down by a factor of 10 from that in Fig 1.5. The initial
orbit orientation is the same as that in the previous examples - in the z-x plane. The
spin direction though now points in the x-direction. In this demonstration none of the
Keplerian orbital elements are exempt from change. Keep in mind that because the
true orbit at Horbit ∼ O

(
r−3
)

warrants the inclusion of Hsch and Hs, which are not
included here, the orbit would look quite different. In this strong field the time per
revolution would be far lower and most semblance of its Keplerian origins would be
visually lost.

Knowing how to calculate the orbits of the stars and pulsars, I can then have them tick in equal
intervals of proper time, and, using the same Hamiltonian, propagate these signals along null
paths to the observer. This is a boundary value problem, whose implementation is explained in
Angélil and Saha (2010) - null geodesics are shot in equal intervals of proper time and terminate
at the observer, who is placed effectively at infinity. This gives us the pulse times of arrival. The
derivative of the arrival times with respect to proper time (1.1) yields the observable in the case
of spectroscopy. In an example orbit, Fig. 1.7 shows the propagation signal residuals due to
Schwarzschild, and Fig. 1.8 due to the spin and spin-squared metric terms.
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Figure 1.7: Here we look at the signal residuals due to the Schwarzschild propagation effects. Be-
cause I wish to look at each effect in isolation, these signals are emitted from clocks
on Keplerian orbits. In this example, I have lowered the eccentricity of the orbit to 0.6
so that the interesting behavior does not overcrowd pericenter passage. The left panel
shows pulsar timing residuals, and the second the redshift of a stellar spectral line.
The signals are shot from a Keplerian orbit with semi-major axis ∼ 1.6mpc (the same
as the example in Fig. 1.4). The Schwarzschild residual is largely dominated by the
Hsch ∼ O

(
r−1
)

Schwarzschild term. The effect illustrated here is sometimes called the
Shapiro delay. Were the orbit size changed, the curve in the left panel would remain
unchanged, as the leading-order Shapiro delay contribution is constant over period.
However, the same effect, viewed with a stellar spectral line, grows with decreasing
period.

17



Figure 1.8: The propagation effects due to spin. All orbits are the same Keplerian one, and have the
same geometry as that in Fig. 1.4 and Fig. 1.7, except here the orbit has semi-major
axis 50 times smaller. Only the spin direction changes in each row, and affects only
the light-ray trajectories. In the first panel, the spin is s = (1, 1, 1) /

√
3. In the second,

the spin vector points towards the observer, and so the frame-dragging signal drops
to zero, while the s2 signal remains. In the last row, the spin points in the direction
perpendicular to the observer-black hole line. The s2 signals on both the timing and
redshift residuals are capable a wide variety of signal shapes, which depend on the orbit
geometry relative to the observer and the spin-direction.
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Fig. 1.9, in a numerical experiment, plots the residual redshift and timing delay against orbital
period, confirming the expected orbit scaling relationships. Fig. 1.10. does the same for propa-
gation effects. Intriguing is that the leading-order Schwarzschild effects, both on the orbit and on
signal propagation (from Hsch and Hsch) make for timing residuals which remain constant as the
orbital size deceases. For the propagation part alone, this characteristic is well-known, but less so
for the orbit. This holds only for timing only though, and not for a spectral line shift - for the
redshift I expect the signal to be larger on smaller orbits, in expectation with (1.8). In fact, since
all redshift-signals have a P-dependence steeper by a factor of the period; prospects for testing
relativity as period sizes decrease improve quicker for stellar orbits than pulsar orbits.
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Figure 1.9: Here I show the size of the residuals on orbit perturbations. As in Fig 1.1., the ec-
centricity of the orbit is 0.6, and has an inclination with respect to the observer of
I = 45◦. The left panel shows the redshift residual, and the right the timing residual.
Relativistic effects cause the orbit shape to change, and here the residual is the size
of the residual observable at pericenter, after one orbit. These curves therefore show
only the cumulative orbital effects. The leading order Schwarzschild contribution has
Hsch ∼ O

(
r−2
)
, and is flat. This is unlike the ∼ O

(
r−3
)

term in Hsch, whose con-
tribution bends the both the timing and redshift Hsch residual curve for short-period
orbits.
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Figure 1.10: These are the residuals due to signal propagation. I show here the magnitudes of the
curves in Fig 1.7. and Fig 1.8. for a range of orbit sizes. The orbit geometry is the
same as that in Fig 1.9. Comparison of these residuals with those on the orbit, in Fig
1.9. help indicate which effects need to be included in the analysis when interested
in a particular effect type. For instance, if a prospective experiment is interested
in measuring the spin s1, then its manifestation on the signal propagation may be
neglected. On the other hand, for s2 experiments, its consequences on neither the
orbits nor propagation paths may be neglected.

1.4 Multipole moments are not hair

The statement that “Black holes have no hair” is the general notion that a black hole event horizon
allows no physical properties of what fell into it to be measured, other than total mass, angular
momentum and electric charge. Or, in other words, any gravitational experiment performed outside
a vacuum, stationary black hole depends only the mass and spin. There are a number of results
that can be considered some version of no-hair theorem. For example, Robinson (1975) shows that
the Kerr metric is the only stationary solution of the vacuum Einstein field equations Rµν = 0.
Thus, in Einstein gravity, an uncharged stationary black hole is not only hairless, but always Kerr.

While the mass M , the spin parameter s, and the orientation of the spin are the only properties
of a Kerr black hole, they enter into the metric in a rather complicated way. In particular, spin
appears in both odd powers (giving rise to frame dragging) and in even powers (producing torque-
like effects). So it is natural to seek a simpler way of describing the dependence on M and s by
analogy with a classical multipole expansion.

In Newtonian physics, given an isolated source with an arbitrary mass distribution, the multipole
expansion of the potential is a sum over spherical harmonic basis functions. This sum is a solution
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to the Poisson equation far enough away from the isolated source. In general relativity, the analogue
to the potential are the components of a rank two tensor, the metric. Despite this analogy, how we
move from these fields to equations of motion in each framework is completely different. Because
of these differences there is no clear way to generalize or transform the notion of a multipole
expansion to general relativity. R. O. Hansen (1974) proposes a definition for multipole moments
in general relativity, and outlines the procedure by which they may be calculated. He goes on to
calculate them for the Kerr metric, and with his choice of definition finds a monopole moment
equal to m, a spin-pole proportional to ms, and a mass-quadrupole proportional to ms2. There is
no mass-dipole moment nor a spin-quadrupole moment. Janis and Newman (1965); Kundu (1981);
Simon and Beig (1983); Fodor et al. (1989) propose other methods and definitions for quadruple
moments, which in some case turn out to reduce to the same result in the Kerr-case. Newman and
Janis (1965), after computing the multipole structure of the Kerr metric using their definition in
Janis and Newman (1965), conclude that because their multiple moments are the same as those for
the electrodynamic system of a ring of charges rotating about its axis of symmetry, that the full
Kerr solution must describe a rotating ring of mass3. The rotating ring explanation was promptly
shown to be erroneous.

Given the Kerr multipole relation, if a metric solution to the field equations, far enough away from
a source possesses a multipole structure which was the same or similar to some Newtonian system,
we could tentatively interpret the metric as a relativistic generalization. The relation between
M, s and the quadrupole of a Kerr metric has been highlighted by several several authors in the
context of S-star system (Liu et al., 2012; Will, 2008; Sadeghian and Will, 2011; Johannsen, 2012;
Johannsen and Psaltis, 2012, 2011; Kramer et al., 2004; Merritt et al., 2010; Iorio, 2011). It is
argued that the Kerr multiple relation is potentially a test of no-hair theorems.

Such claims must be taken with a grain of salt for several reasons.

• First, a test of the Kerr multipole relations is a test of Kerr, but not of no-hair. What if the
Universe gives black holes no hair, but does not obey Einstein gravity and as a result, no
black holes are Kerr.

• Second, if the goal is to test the Kerr metric, and hence Einstein gravity, why restrict attention
to the Kerr quadrupole relations? The form of the Kerr metric provides much more detailed
predictions than multipoles. Furthermore, there are terms in the metric which are artifacts of
Schwarzschild, and so do not depend on spin. As shown in Table 1.3, they occur at the same
order as the spin terms. As far as tests of the field equations go, effects that are sensitive to
s or s2 are no more special than those that aren’t. This because the Schwarzschild solution
is no less remarkable than the Kerr, as both descend from the same field equations.

• Finally, the R. O. Hansen (1974) definition of multipoles is anyway not unique. Janis and
Newman (1965), Newman and Janis (1965), Kundu (1981), Simon and Beig (1983), and
Fodor et al. (1989) propose other definitions for multipole moments, which in some cases
turn out to reduce to the same results for the Kerr-case. Thorne (1980) consolidated various
approaches, and introduced the definitions now standard in gravitational wave theory.

The supposed ‘tests of no-hairness’ seen in the literature are really ‘tests of one aspect of Kerrness’.
I stress that because all relativistic effects, spin-dependent or not, descend from the same field
equations, are of equal significance in testing gravity around a compact source. Let us not forget
that discussion on galactic center tests of Kerrness is somewhat overshadowed by the fact that
regardless of the nature of the galactic center black hole, we should expect tests of Kerrness to fail.

3This was before the Kerr geometry had been written Boyer-Linquist coordinates, which greatly aided the physical
interpretation.
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By this, I mean that should the Einstein equations show themselves faithful to our expectations, we
can still expect deviations from freely-falling test particles in the Kerr field, because the space-time
is no vacuum, nor are the clocks true test particles. Because of the uncertainties in the stellar mass
distribution around Sgr A*, we are somewhat oblivious as to what the deviations might look like.

1.5 Wrapping up

S stars and if existent, S pulsars, travel upon the most relativistic orbits known. With them,
completely unexplored characteristics of general relativity will become accessible. Transient shape-
changes, signal propagation delay, intrinsic redshifting, all either due to already-tested metric
terms, or higher-order ones are to be expected and reveled. If the observed dynamics are not in
agreement with that predicted from Einstein gravity even after taking the surrounding astrophysical
environment into account, then it may be challenging to work out what went wrong. It’s possible
that the intense gravitational field is not due to a black hole at all, but rather some other kind of
dense matter. Apparent general relativity-failure could be attributed to two fundamental reasons:
the field equations are wrong, or, the principle of equivalence does not hold and the gravitational
laws of physics are non-metric. (Of course, in either case, the no-hair conjecture could still hold
true.)

The relativistic effects which will be observable on galactic center geodesics are extensions of similar
experiments in the solar system and in binary pulsars. If general relativity is to be trusted, then
galactic center stars and pulsars, if found further in to the black hole, will test the same metric,
albeit in fields orders of magnitude stronger. The combination of the strong field as well as long
period orbit timescales push otherwise invisible or irrelevant features into the observables. Solar
system and binary pulsar methods will not work. Precession is not gradual, but rather a shock
that happens at pericenter. The consequence of pericenter passage is especially true for terms
which crop up at higher order, like those proportional to the spin or its square.

This regime expects the full 4-dimensional relativistic equations to be solved. Few effects can be
captured by analytical formulae like (1.3), (1.4) and (1.5). Analytical versions for many of the
expected effects are not known, and those that are available tend to strip them down by shunning
transient phenomena. Furthermore, all effects are all coupled, which places further burden on
analytical approaches.

The spectrometers of the Keck and VLT telescopes have independently observed the spectra of
the S stars, managing to achieve spectral resolution up to ∼ 10km · s−1. The European Extremely
Large Telescope project will be able to perform these measurements at 1km · s−1, and so will also
play an important role in future experiments. Angélil et al. (2010) argue that the Schwarzschild
effects discussed in this thesis, both on the orbit and on the photon paths, will be resolvable by
these instruments for the known S stars. Higher order effects however will necessitate the discovery
of stars further in to the black hole.

Were S-pulsars to be detected around Sgr A*, the Parkes observatory, Green Bank, and Effelsberg
radio telescopes will be among the facilities capable of performing accurate timing. Liu et al. (2012)
estimate a timing accuracy for such arrays to be σTOA ∼ 1ms. The high frequency component of
the Square Kilometer Array will be expected to achieve accuracies an order of magnitude better.
In a pure Kerr field, measurements at this accuracy level would likely be capable of resolving even
spin-squared effects on S-pulsar orbits and propagation signals, with orbital periods ∼ 10 years.
Of course, the extended mass distribution of as-yet unseen stars orbiting Sgr A* will obscure these
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signals. For orbits with such periods, the leading-order Schwarzschild contributions, transient and
cumulative, might be resolvable. However higher order ones will likely be obscured by red noise due
to the extended mass distribution. Unless compelling techniques capable of extracting relativistic
signals drowned out by this noise are developed, stars and pulsars closer in to the black hole than
those yet discovered are needed.
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ABSTRACT

The S stars in the Galactic-center region are found to be on near-perfect Keplerian orbits around presumably a
supermassive black hole, with periods of 15–50 yr. Since these stars reach a few percent of light speed at pericenter,
various relativistic effects are expected and have been discussed in the literature. We argue that an elegant test of
the Einstein equivalence principle should be possible with existing instruments, through spectroscopic monitoring
of an S star concentrated during the months around pericenter, supplemented with an already-adequate astrometric
determination of the inclination. In essence, the spectrum of an S star can be considered a heterogeneous ensemble
of clocks in a freely falling frame, which near pericenter is moving at relativistic speeds.

Key words: Galaxy: center – relativistic processes

1. INTRODUCTION

The equivalence of gravitational and inertial mass, or that
gravity can be canceled by transforming to a freely falling frame,
was tested within classical celestial mechanics to high precision
by the end of the nineteenth century. After all, if Mercury had
a gravitational constant differing from (say) Jupiter’s by one
part per million, Mercury’s orbit would not have fitted classical
dynamics well enough to highlight the anomalous precession
(43′′ per century, or 10−7) that was later explained by general
relativity.

The Einstein equivalence principle (EEP) adds to the classical
or weak equivalence principle the further physical postulate
that special relativity holds locally in a freely falling frame.
A consequence of the EEP is that the effects of gravity on
test particles are fully described by endowing spacetime with a
Riemannian metric, and having the particles follow geodesics
of that metric. A further consequence of the EEP is that
the temporal metric component is, to leading order, given by
gtt = 1 + 2Φ, where Φ is the Newtonian potential. Hence,
gravity causes time dilation.

Different aspects of the EEP have been verified by multiple
experiments, as reviewed extensively by Will (2006). In par-
ticular, null-redshift experiments test that gravity—whatever it
does—does the same to clocks of different types. Pound–Rebka
experiments verify that, in a static gravitational field, time is
dilated by a factor g

−1/2
t t � 1−Φ. GPS satellites and binary pul-

sars are effectively freely falling clocks moving at1 ∼10−5 and
∼10−3, respectively, and exhibit time dilation of g−1

t t � 1−2Φ.
As excellent as the existing experiments on the EEP are,

it would be even nicer to have a laboratory with experiments
on multiple materials, the whole freely falling at relativistic
speeds. In this Letter, we suggest that the S stars in the Galactic-
center region approximate such a laboratory. Stellar spectra
contain absorption lines from different atomic species, which
can be regarded as different clocks. The EEP asserts that special
relativity holds in the star’s frame for all atomic processes
(local Lorentz invariance), irrespective of where the star is (local
position invariance), and these can be tested by observations of
a single star. The remaining ingredient of the EEP, namely, that
a freely falling frame does not itself depend on the composition
of the star (universality of free fall, UFF) requires multiple stars.

1 We use geometrized units: GM = c = 1, where M is the black hole mass.

The nature of a violation of the UFF is difficult to speculate on,
however, one could imagine, for example, fits from different
S stars’ redshift curves all yielding different values for the black
hole (BH) mass. Such a deduction would signal a violation of
the UFF.

Going beyond the EEP, yet another possibility is that a star
with a relativistically significant gravitational self energy, i.e.,
a pulsar, may give different results. Such a result would be a
violation of the strong equivalence principle. It is expected that
a significant number of pulsars inhabit the inner milliparsec,
and although none have yet been found, searches are currently
underway (Macquart et al. 2010).

The S stars achieve the highest speeds of any known
geodesics. For example, S2 reaches v > 0.03 at pericenter,
which it last passed in 2002 and will again in 2018. The peri-
center speed is an order of magnitude faster than for known
binary pulsars. The spatial scales at pericenter are of order a
light day. Hence, even if the quantitative constraints are initially
modest, the S stars would test the EEP at velocity and spatial
scales not reached by other experiments.

Astrometric and redshift observations of the S stars show them
to be on orbits (so far) indistinguishable from pure Keplerian
(Gillessen et al. 2009a; Ghez et al. 2008; Gillessen et al. 2009b).
Keplerian elements are known to high accuracy for many stars.
For example, for S2 the orbital inclination is measured to be
135◦ ± 1◦. Expected relativistic effects have been discussed
extensively in the literature. These include not only time dilation
(Zucker et al. 2006), but also secular orbit precession (Rubilar
& Eckart 2001; Will 2008) plus Newtonian perturbations from
other stars (Merritt et al. 2010), kinematic effects due to space
curvature and frame dragging (Kannan & Saha 2009; Preto
& Saha 2009), and composite redshift perturbations including
light-path effects (Angélil & Saha 2010; Angélil et al. 2010).

The EEP implies a time dilation of 1 + 2/r . Hence, a spectral
line intrinsically at ν0 will be redshifted to ν, where

ν0

ν
= (1 + vlos)

(
1 +

2

r

)
. (1)

Redshift is conventionally defined as ν0/ν − 1. It is, however,
somewhat more convenient if one defines ln(ν0/ν) as the
redshift, and we will do so. In any case, the 2/r term constitutes
a redshift perturbation of O(v2) and is the strongest relativistic
perturbation. In other words, the leading-order perturbation due
to relativity is time dilation on a Keplerian orbit. Space curvature
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perturbs the redshift at O(v3), frame dragging due to BH spin
at O(v4), with additional physical effects continuing at higher
orders (Angélil et al. 2010). One way to test the EEP would
be to replace 2/r in Equation (1) by α/r and fit observed
redshift curves for the parameter α. In fact, this has already
been attempted (Zucker et al. 2006) but the available data
appeared not yet sufficiently accurate to overcome systematic
uncertainties. We argue below that observations concentrated
near pericenter will be particularly useful.

Relativistic perturbations to the S stars increase with decreas-
ing pericenter distance. In orbit fitting from spectroscopy, as one
looks to stars with longer periods, the perturbations to the red-
shift from relativity become overwhelmed by perturbations due
to massive perturbers. Of all the compact objects orbiting the
central BH, we see only the brightest stars. Thousands of solar
masses worth of compact objects and a possibly significant dark
matter component are expected to inhabit the inner arcseconds.
Our lack of understanding of the form of this extended system
may play a significant role in obscuring relativistic perturbations
for large orbits. However, current models for the Newtonian per-
turbations are estimated to most likely be weaker than the time
dilation effect for the shortest-period stars such as S2 (Schödel
et al. 2009; Merritt et al. 2010). Hence, we will disregard the
extended-mass component in our analysis.

2. OBSERVABLES

Consider a star on a pure Keplerian orbit. Elementary celestial
mechanics gives the position of the star parametrically, that is,
both coordinates and time are expressed as functions of the
so-called eccentric anomaly ψ . At time

t = P

2π
(ψ − e sin ψ) , (2)

the position of the star in its orbital plane is

(x, y, z) = P

2π
√

a
(cos ψ − e,

√
1 − e2 sin ψ, 0). (3)

Here P is the period, e is the eccentricity, while a is the
semimajor axis in units of the gravitational radius of the BH.

We now rotate the coordinate system, first by the argument
of periapsis ω about the z-axis, then by the inclination I about
the new x-axis. The observer is now along the new z-axis. The
redshift is

ln
ν0

ν
= dz

dt
+

α

r
= AC f (e, ω,ψ) + AR

1 − e cos ψ
, (4)

where

f (e, ω,ψ) ≡
√

1 − e2 cos ω cos ψ − sin ω sin ψ (5)

and we have introduced the coefficients

AC ≡ sin I√
a

and AR ≡ α

a
, (6)

which can be interpreted as the amplitudes of the classical and
relativistic contributions to the redshift. We also note that t above
is the coordinate time of emission. The time of observation is,
of course, t plus the light travel time, whose varying part is the
Rømer time delay, which is the z-coordinate of the star

AC

P

2π
[(cos ψ − e) sin ω +

√
1 − e2 sin ψ cos ω], (7)

and can also be interpreted as the time integral of the
redshift.

Classically, the redshift curve determines only the combina-
tion sin I/

√
a, leaving the inclination unknown. Hence, for a

given redshift curve, the inferred orbital speed becomes infinite
if the orbit is face-on. Not surprisingly, relativity prevents that
happening. From Equations (4) and (6) it follows that

sin2 I = A2
C

AR

α. (8)

Hence, time dilation breaks the inclination degeneracy if α is
known, or allows α to be measured if I is known from astrometry.

It is worth mentioning that another way in which relativity
can break the inclination degeneracy is through the well-known
precession of

Δω = 6π

a(1 − e2)
(9)

per orbit. For binary pulsars, the cumulative ω precession
amounts to several degrees per year, allowing a and hence I
to be inferred (Brumberg et al. 1975). For Galactic-center stars,
however, the ω precession builds up much more slowly. Over
a single orbit the redshift due to precession is ∼O(v3) because
Δω ∼ O(v2) over one orbit.

3. PARAMETER RECOVERY

We treat the following seven parameters as unknown.

1. The period P.
2. An additive constant on t.
3. The eccentricity e.
4. The argument of pericenter ω, which along with the

inclination I sets the orbit orientation with respect to the
observer. Since the observer is on the z-axis, the nodal
angle Ω corresponds to a rotation around the line of sight,
which leaves the redshift curve invariant.

5. The intrinsic frequency ν0. This is the absolute line cali-
bration plus any offset due to the observer’s radial velocity.
Changing ν0 shifts the redshift curve vertically. The tan-
gential motion of the observer is neglected here, since the
Sun’s orbital speed of ∼200 km s−1 in the Galaxy would
contribute no significant Doppler shift.

6. A classical redshift amplitude AC.
7. A relativistic redshift amplitude AR. In fact, a, I, α form a

degenerate trio and are absorbed into the non-degenerate
dummy parameters AC and AR via Equation (6).

Astrometry independently measures the first four of these,
as well as I. Astrometric observations also involve six other
parameters: the position and proper motion of the Galactic center
on the sky, the distance to the Galactic center, and Ω. The mass
of the BH is not an independent parameter, since it is a function
of P and a. For our purposes, only I from astrometry is essential.
In testing the EEP, while we shall argue that observation of the
star over a short time around pericenter suffices for spectroscopy,
recovery of the inclination via astrometry can be done anywhere
on the orbit.

It is important to note ν0 and ν need not refer to a single spec-
tral line. The spectra of S stars (see, e.g., Martins et al. 2008)
contain multiple features. Most are early-type stars with H and
He features, while about 10% are late-type stars with molec-
ular and metal bands/lines and little or no H or He. Hence, S
star spectra could, in principle, test the equivalence principle

2
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Figure 1. Recovery of α for 10 mock data sets. The ratio A2
C/AR is the slope

of the lines in the above plot and is recovered from mock spectroscopic data
of 14 data points with accuracy 10 km s−1, concentrated around pericenter.
The horizontal lines are the upper and lower confidence levels for the recovered
inclination from astrometry, taken from Gillessen et al. (2009b). The intersection
point corresponds to the value of α for which both data types agree on the
inclination.

for multiple atomic processes. If the stellar atmosphere does not
change appreciably over an orbit, an observed spectrum can be
cross-correlated on a logarithmic wavelength scale with a spec-
trum observed at some other epoch, and the cross-correlation
peak would directly give the redshift ln(ν0/ν) with ν0 an un-
known constant. If different atomic/molecular species behave
differently in a freely falling frame, the shape of the cross-
correlation curve would change. Alternatively, multiple spectral
features could be fitted simultaneously with variable redshift.
We do not, however, attempt to model the observable spectra
explicitly in this Letter.

We now simulate the recovery of α as follows. We generate
10 mock redshift data points of S2 taken over two months at
pericenter, plus four additional data points, at ±1,±2 yr around
pericenter. The data are generated with α = 2 and orbital
parameters taken from Gillessen et al. (2009b). To them we add
Gaussian random noise at a dispersion of 10 km s−1 and then fit
via the seven parameters. We then assume I has been measured
by astrometry and use Equation (8) to recover α. Figure 1 shows
an example for a few mock data realizations at a fixed accuracy
and Figure 2 shows the dependency of the recovered value of
alpha with the data accuracy.

4. DISCUSSION

Testing the equivalence principle using a combination of
spectroscopy and astrometry seems possible in the near future.
In comparing the spread in A2

C/AR from mock data to the
recovered value for I from real astrometric data (illustrated in
Figure 1), in testing the equivalence principle using S2, the
current accuracy available from astrometry sits at a comfortable
level. Spectroscopic accuracy of S2 at 10 km s−1 is not yet
available, but seems plausible with future observations. For the
late-type star S35, which has a more favorable spectrum, a fit
error of 10 km s−1 has been achieved (Gillessen et al. 2009b).
We remark that any systematic errors that do not change between
observations are harmlessly absorbed into ν0.

Figure 2. 1σ level in the recovered value of α for spectroscopic data of different
accuracy. At each data accuracy level, we have performed the same procedure
illustrated in Figure 1, except that 60,000 mock data realizations have been used.

Naturally, in detecting relativistic effects on S stars, data dur-
ing pericenter passage are of greatest value. With instrumen-
tation currently available, an observation program concentrated
over two months during S2’s next pericenter passage (2018) will
prove to be sufficient as a test for the EEP. Figure 2 argues that
a small handful of spectral measurements of S2 at 10 km s−1

around pericenter imply a 1σ accuracy on α of ∼0.3.
The approach we have taken above focuses on the essentials.

The degeneracy between α, I, and a for spectroscopy has been
lifted by using astrometry only to provide I. In practice, all
the parameters are fitted simultaneously to both astrometry and
spectroscopy. We have done simulations to verify that when this
is done, the degeneracy is implicitly broken by the mechanism
highlighted in this Letter.

Relativistic effects can be expected to become increasingly
important as corrections in other astrophysics relating to the S
stars. Three areas where this can be expected are the following.

1. The combination of spectroscopic and astrometric S star
data provides us with the distance to the center of the
galaxy. Astrometry is sensitive to the angular size of the
orbit, while spectroscopy on the physical size. The quotient
is the distance to the galactic center (Eisenhauer et al. 2003).

2. The position of the observed line depends on the velocity of
the BH-star system with respect to the Earth. Spectroscopy
therefore has the power to determine our velocity with
respect to the central BH (Angélil et al. 2010), thus
constraining the U component of the Galactic local standard
of rest.

3. The form of the mass distribution within the inner arcsecond
affects the S star orbits. A better understanding of the
density profile will provide insight into the region’s star
capture and formation history, and to the central dark matter
distribution (Ghez et al. 2008; Gillessen et al. 2009b).

In exploring (1) and (2), one cannot easily avoid relativity
simply by considering stars with larger orbit sizes (3), as per-
turbations due to the enclosed mass become a problem. With
the accuracy regime that spectroscopy will enter in the coming
decade, one of two types of perturbations to the redshift must

3
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be faced: either those from the extended mass distribution, for
S stars with large orbits, or, those perturbations from relativity,
for smaller orbit S stars. While effects due to relativity are well
understood in principle, and can be easily treated, the constitu-
tion of the extended system is poorly understood and requires
a more grueling treatment. In the coming decade, spectroscopic
S star accuracy at ∼10 km s−1 is expected to be available, and
the discovery of stars closer in to the BH is anticipated. In light
of these prospects, so that constraints on these quantities may
be improved, relativistic perturbations, while interesting in their
own right, can no longer be ignored and must be faced.

The authors thank S. Gillessen, G. F. R. Ellis, and J.-P. Uzan
for discussion and comments.
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ABSTRACT

The high pericenter velocities (up to a few percent of light) of the S stars around the Galactic-center black
hole suggest that general relativistic effects may be detectable through the time variation of the redshift
during pericenter passage. Previous work has computed post-Newtonian perturbations to the stellar orbits.
We study the additional redshift effects due to perturbations of the light path (what one may call “post-
Minkowskian” effects), a calculation that can be elegantly formulated as a boundary-value problem. The
post-Newtonian and post-Minkowskian redshift effects are comparable: both are O(β3) and amount to a
few km s−1 at pericenter for the star S2. On the other hand, the post-Minkowskian redshift contribution of
spin is O(β5) and much smaller than the O(β4) post-Newtonian effect, which would be ∼0.1 km s−1 for S2.

Key words: Galaxy: nucleus – gravitation – stars: kinematics and dynamics
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1. INTRODUCTION

Over the past decade, dozens of fast-moving stars orbiting a
large compact mass (thought to be a supermassive black hole
with mass ≈4.4 × 106 M�) have been discovered (Ghez et al.
2008; Gillessen et al. 2009). The highly eccentric orbits and
the low pericenter distances of these stars (∼3 × 103 of the
gravitational radius in the case of S2) provide a lucrative testing
ground for general relativistic perturbations to Keplerian orbits.
High resolution spectral and astrometric measurements of such
stars would also aid in the modeling of the mass distribution
in the Galactic center. Other consequences of general relativity,
the possible form of the metric itself (and the corresponding
theories to which the metric is a solution) could be studied.

The prospect for measuring general relativistic pericenter pre-
cession, an O(β2) effect (where β is the pericenter velocity in
light units) for the Galactic-center stars is widely appreciated
(see, for example, Jaroszynski 1998; Fragile & Mattews 2000)
and is anticipated to be observable by interferometric instru-
ments currently under development (Eisenhauer et al. 2009).
Should stars further in be detected in the future, precession
effects at O(β4) would become measurable, enabling tests of
no-hair theorems (Will 2008).

Relativity also perturbs the kinematics of a star. Zucker et al.
(2006) drew attention to the rapid velocity changes that stars
undergo around pericenter passage, and argued that the O(β2)
effect of time dilation in the star’s frame would be measurable
as a perturbation of the redshift. Kannan & Saha (2009) cal-
culated the O(β3) kinematic contribution of space curvature gij
and O(β4) effect of black hole spin g0j , suggesting that even
the latter may become measurable with future interferometric
instruments. Preto & Saha (2009) presented a new orbit inte-
gration method in the presence of space curvature, spin, and
Newtonian Galactic perturbations.

In this paper, we extend previous work to include the redshift
contributions that come from the effect of space curvature
and spin on the light path between the star and the observer.
Specifically, we will compute the redshift of a moving point
source in a weak-field approximation of a Kerr metric, identify
the various contributions, and investigate the scaling of these
signals with orbital size.

We formulate the problem as two photons emitted from a
stellar orbit, an infinitesimal proper time interval Δτ apart. Both
photons hit the observer, but with a difference Δt in arrival time.
The redshift z is then

Δt = (1 + z)Δτ. (1)

The physical process is the same as in the calculation of
the spectrum of an accretion disk (e.g., Müller & Camenzind
2004), only the computational strategy needed is different. In
the accretion-disk case, photons are shot backward from the
observer in a range of directions, but in the general direction
of the extended source (the disk). By considering the collision
events of each ray with the source surface, the quantities of
interest may be read off. In the stellar-source case, however,
it is necessary to solve for the initial direction of a photon so
that it will reach the observer. Hence we have a boundary-value
problem.

Figure 1 is a schematic illustration of our method. Photons
are emitted from nearby spacetime points on the stellar orbits
and travel to the observer. In the left-hand picture, the star
emits “Minkowski photons”, which feel no space curvature and
travel in straight lines; redshift depends only on the velocity
and time dilation of the star. This is in effect the approximation
used in previous work. In the middle picture, the star emits
“Schwarzschild photons”, which feel space curvature. In the
right-hand picture, the star emits “frame-dragging photons”,
which feel spin as well as space curvature.

Below, Section 2.1 details the problem to be solved
and the method used for calculation of the redshift. The
Matlab scripts implementing our algorithm are available as an
online supplement. Then Section 2.2 presents the black hole
model and associated metrics which we use in our approach,
and Section 2.4 derives how the various effects scale with orbit
size. We apply our algorithm to the star S2, and detail the results
in Section 3.

2. THE REDSHIFT-CALCULATION METHOD

2.1. A Boundary-value Problem

In order to calculate the redshift of a moving star as observed
by a fixed observer, we need to solve the geodesic equations for
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Figure 1. Schematic illustration of the method. Pairs of photons are emitted at slightly different proper times along the orbit, in precisely the right direction to reach
the observer. Finding these photons is a boundary-value problem, and once found, each photon pair allows us to calculate the redshift at that point on the orbit by
evaluating Equation (5). Left: Minkowski photons, which move in straight lines. Middle: Schwarzschild photons, which are lensed. Right: frame-dragged photons.
The time difference between the emission of each photon in a pair has been exaggerated here for visual clarity. Note that it is only the star’s unrealistic proximity to
the black hole that allows for such a visible depiction of the different effects.

both the star and photons. Geodesic equations are commonly
expressed in terms of the Lagrangian,

L = 1
2gμνẋ

μẋν (2)

with dots denoting derivatives with respect to the affine pa-
rameter. But an equivalent formulation exists in terms of a
Hamiltonian

H = 1
2gμνpμpν. (3)

We will follow the latter in this work. Numerically H = L. We
will in fact employ two Hamiltonians1 Hstar andH null, which are
really two different approximations for the same Hamiltonian.
Numerically H null = 0 of course. We will write λ for the affine
parameter of the star, and σ for that of a photon.

Consider two photon trajectories, emitted at two points on the
star’s orbit Δλ apart in the affine parameter, with both photons
terminating at the observer and arriving at time Δt apart in the
observer’s frame. Since dτ = √|gμνdxμdxν |, we are able to
express the proper time between the emission events in terms of
the affine parameter as

Δτ = Δλ
√

|2Hstar|, (4)

where Hstar is evaluated at either point of emission. Comparing
with the definition (1) of the redshift, we have

z = Δt

Δλ
√|2Hstar|

− 1. (5)

We now need to compute Δt for a given Δλ. To do this,
we begin by calculating the orbit of the star for some chosen
initial conditions, by solving Hamilton’s equations for Hstar
with λ as the independent variable. The temporal component
of the generalized momentum is set at pt = −1. This amounts

1 In an effort to keep the distinctions between effects on the star orbit and
those on the light path as perspicuous as possible, we adopt subscripts for
orbital effects and superscripts for light-path effects. This notation may be
found on Hamiltonians H and redshifts z, and has nothing to do with
covariant/contravariant indices.

to choosing the units for λ such that dt = dλ outside of
gravitational fields. We then choose a point on the star’s orbit
whose observed redshift we wish to calculate, and from this
point we seek a photon that will reach the observer.

Consider a function Φj , which effectively shoots a photon
by integrating Hamilton’s equations for H null with given initial
conditions at affine parameter σ = 0 and returns the three-
position at σ = 1. We write

Φj (t, xi, pi) = xj |σ=1, (6)

where i, j = 1, 2, 3 and the initial pt is chosen such that
H null = 0. We pass the function Φj to a root finder, and solve
for the root of

f (pi) = Φj − x
j

obs (7)

by varying the initial three-momentum pi. Naturally, we may
not adjust the xi, as we are interested in a specific point on the
star’s orbit.

The root-finding algorithm requires a set of initial guesses
for the initial pi of the photon. On this account, we shoot an
initial-guess photon from the star position in the direction of the
observer, that is, we evaluate Φj with trivial initial conditions.
These initial-guess values for the pi shoot in the direction of the
observer ignoring curvature. However, because the spacetime is
indeed curved, this photon will not hit the observer. It serves
only to start the root-finding algorithm.

Once the root finder reports a solution within specified
tolerance level, we move the star a very short distance (Δλ in
affine parameter) along its orbit, and repeat the above procedure,
now solving for the sought-after trajectory at the star’s new
position. The difference in arrival times of the two photons is
Δt , which we insert into Equation (5) to evaluate the redshift.

Thus far we have solved for two photon trajectories. This
computation has enabled us to calculate the redshift at a chosen
point on the orbit. We may then repeat this process at further
points along the orbit, garnering results as much as the required
resolution demands.
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2.2. Post-Newtonian and Post-Minkowskian Approximations

The spacetime outside a spinning black hole is described
by the Kerr metric. Since the Galactic-center stars are far
from the horizon, approximations valid only at large r can be
used to study general relativistic effects. Accordingly, we first
derive two perturbative Hamiltonians, a post-Newtonian Hstar
for stars, and a post-Minkowskian2 approximation H null for
photons. Different physical effects come into play at different
orders of the perturbation parameter3 ε, and we will show these
numerically by toggling different terms on and off.

Taking the Kerr metric in Boyer–Lindquist coordinates with
geometric units GM = c = 1 (leaving us with a unit of length
equal to the gravitational radius GM/c2 � 5 × 106 km for the
Galactic-center black hole) we have the full Hamiltonian

HKerr = (r2 + s2)2 − s2Δ sin2 θ

2ρ2Δ
p2

t − Δ
2ρ2

p2
r − 1

2ρ2
p2

θ

− Δ − s2 sin2 θ

2Δρ2 sin2 θ
p2

φ +
2sr

2ρ2Δ
ptpφ, (8)

where

Δ ≡ r2 − 2r + s2 and ρ2 ≡ r2 + s2 cos2 θ (9)

and s denotes the black hole spin parameter.
Let us first consider the dynamics of the star. Sufficiently far

from the black hole, the post-Newtonian approximation

v2 ∼ 1/r (10)

applies. If we choose v ∼ O(ε) then by Equation (10) r is
O(ε−2). Correspondingly, we force the velocity terms pr, pθ/r,
and pφ/r to be O(ε). Making the following replacements in
Equation (8),

r → ε−2r, pr → εpr, pθ → ε−1pθ , and pφ → ε−1pφ

(11)
and keeping terms to O(ε5), we obtain

Hstar = −p2
t

2
+

(
p2

r

2
+

p2
θ

2r2
+

p2
φ

2r2 sin2 θ
− p2

t

r

)
ε2

−
(

2p2
t

r2
+

p2
r

r

)
ε4 − 2sptpφ

r3
ε5. (12)

We can abbreviate Equation (12) as

Hstar = Hstatic + ε2 HKep + ε4 HSchw + ε5 HFD. (13)

Here Hstatic produces motionless geodesics, HKep gives the
Keplerian phenomenology, HSchw is the weak-field
Schwarzschild contribution that produces pericenter preces-
sion, while the angular-temporal term HFD produces the Lens–
Thirring effect or frame dragging.

Continuing now to photon trajectories, we remark that by
the equivalence principle, the full Hamiltonian is exactly the
same for photons and stars. However, the same terms can have
different orders in the two regimes, prompting approximation

2 The term “post-Minkowskian” is often used as a synonym for “weak-field
metric.” We are using it, however, to refer specifically to light paths that
deviate slightly from special relativity.
3 In this paper ε, ε2 and so on are just labels to keep track of different orders.
Numerically ε = 1.

H null. In particular, the approximation (10) obviously does not
hold for photons, which have v2 = 1, implying the scalings

r → ε−2r, pθ → ε−2pθ and pφ → ε−2pφ (14)

with pr being O(1). Expanding as before, we obtain

H null = −p2
t

2
+

p2
r

2
+

p2
θ

2r2
+

p2
φ

2r2 sin2 θ
−

(
p2

t

r
+

p2
r

r

)
ε2 +

−
(

2p2
t

r2
+

2sptpφ

r3
− s2 sin2 θ

2r2
p2

r +
s2 cos2 θ

2r4
p2

θ

)
ε4,

(15)

a different selection of terms compared to the post-Newtonian
case. There is no term at O(ε5). We may abbreviate
Equation (15) as

H null = HMink + ε2 HSLO + ε4
(
HSNLO + HFD + Htorq

)
. (16)

At zeroth order we have special relativistic or Minkowski
photons. The leading-order Schwarzschild effect HSLO gives the
gravitational deflection of light. At O(ε4); however, there are
three distinct effects: first HSNLO gives a next-to-leading-order
correction to the Schwarzschild effect, the off-diagonal term
HFD gives frame dragging again but for photon trajectories,
while Htorq provides a torque proportional to s2.

2.3. Pseudo-Cartesian Coordinates

The spatial Boyer–Lindquist coordinates r, θ, φ are conve-
nient for computing stellar orbits, but not well suited for photon
paths. The photon paths are nearly straight lines, but since the
observer is much further from the black hole than the source,
tiny variations in θ and φ at the observer imply large distances.
As a result, both the integrator and the root finder become sus-
ceptible to roundoff error.

To cure the problem, we change to pseudo-Cartesian coordi-
nates. They are not purely Cartesian, as the surface x2 + y2 + z2

is not spherical:

x = r sin θ cos φ, y = r sin θ cos φ, z = r cos θ. (17)

The corresponding momenta are readily derived by completing
the canonical transformation, leading to the usual relations

pr = x · p
r

, pφ = (x × p)z, p2
r +

p2
θ

r2
+

p2
φ

r2 sin2 θ
= p2.

(18)
The form of H null changes accordingly. The Minkowski part
bears the familiar form

HMink = −p2
t

2
+

p2

2
. (19)

The leading-order Schwarzschild terms are

HSLO = −p2
t

r
− (x · p)2

r3
, (20)

and the associated O(ε4) term retains its previous form of

HSNLO = −2p2
t

r2
. (21)
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Figure 2. Redshift calculation for an S2-like star over two orbits. The left panel shows the time each photon takes to travel from the star to the observer. The star
begins at the apocenter, which happens to be closer to the observer than the pericenter. Therefore, the light travel time naturally increases as the star moves toward
its pericenter. The right panel shows the redshift. The peaks occur during pericenter passage due to the high pericenter passage velocities. The calculation includes
post-Newtonian and post-Minkowskian effects, but these are too small to see in this figure.

Also at O(ε4) we have the frame-dragging term

HFD = −2spt

r3
(x × p)z , (22)

and the torquing terms

Htorq = s2

2r2

(
1 − z2

r2

) (x · p
r

)2
− s2

2z2

×
[

p2 −
(x · p

r

)2
− (x × p)2

z

r2 − z2

]
. (23)

The torquing terms are the most difficult to integrate numeri-
cally. This is because while the terms themselves are at O(ε4),
they involve quotients of particularly high powers. Taking
derivatives of Htorq further bloats these bottom and top heavy
fractions, and provokes roundoff errors. We argue below that
the torquing terms are in any case unimportant for the known
Galactic-center stars. Hence, we omit these terms in our numer-
ical work.

2.4. Scaling Properties of Redshift Contributions

We can infer the scaling with orbital size a of the redshift
contributions Δz of the various perturbative terms in Hstar with
the following deliberation. Consider a perturbative term

ΔHstar ∼ a−n. (24)

SinceHstar is constant along the orbit, any variation in ΔHstar has
to be balanced by a variation in the unperturbed Hamiltonian.
Since the latter scales as Hstar ∼ 1/a, we have ΔHstar ∼ Δa/a2,
giving

Δa ∼ a2−n. (25)

Furthermore, since the orbital velocity scales as v ∼ a−1/2, we
have Δv ∼ a−3/2 Δa and hence the redshift signal

Δz (ΔHstar) ∼ a
1
2 −n. (26)

A similar argument can be made for the perturbative terms
ΔH null. In this case we compare photons emitted from the
same point, only with different Hamiltonians. While the redshift
signal from the previous case necessitated our consideration of

the stellar velocity only, in analyzing the gravitational redshift
signal, we are naturally interested in the time difference Δt due
to ΔH . Let the perturbation be

ΔH null ∼ r−n. (27)

Since the light travel time is an integrated quantity, we expect
the change in the light travel time to scale as

Δttrav ∼ r1−n. (28)

The change Δttrav in light travel time must not be confused with
the difference Δt in arrival time of two photons. For the latter
quantity we get Δt ∼ Δr/rn and since Δr between two photons
is ∼ v ∼ a−1/2 we derive

Δz(ΔH null) ∼ a− 1
2 −n. (29)

Using Equations (26) and (29) and recalling that each power
of ε in the Hamiltonians represents a scaling factor of r−1/2 we
can read off the following scalings:

⎛
⎜⎝

HSchw
HFD

HSLO

HSNLO Htorq HFD

⎞
⎟⎠ ⇒ Δz ∝

⎛
⎜⎜⎝

a−3/2

a−2

a−3/2

a−5/2

⎞
⎟⎟⎠ . (30)

3. APPLICATION TO S2-LIKE ORBITS

We select S2 for a case study, since S2 has the shortest orbit
and one of the highest pericenter velocities of all the known stars
orbiting Sagittarius A∗, and hence provides us with perhaps the
best opportunity to observe general-relativistic effects.

Figure 2 shows a redshift calculation for a star with S2’s
orbital parameters. These are taken from Gillessen et al. (2009).
The gravitational radius is taken as 5×106 km. For definiteness,
we take the spin to be maximal, and pointing toward Galactic
North. Disk seismology models (Kato et al. 2009) put the spin
at s ≈ 0.44. The direction however, remains unknown.

All the contributions to Hstar in Equation (13) are included
for the orbit calculation. The photon trajectories include all
contributions to H null in Equation (16) except for Htorq.

Naturally we would like to compute the redshift contributions
of the various relativistic terms, and verify that they follow the
expected scalings (30). In order to do this, we examine the
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Figure 3. Redshift difference zMink
Schw − zMink

Kep showing the contribution of HSchw. The left panel shows the redshift difference for three orbits, one with the parameters

of S2, and the other two with a doubled or halved. In the middle panel, the horizontal scale is stretched (a/aS2)−3/2. In the right panel, the redshift difference is scaled
by (a/aS2)−3/2.
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Figure 4. Redshift difference zMink
FD − zMink

Schw showing the contribution of HFD. The scheme follows Figure 3 except that the redshift difference is scaled by (a/aS2)−2.

differences between redshifts computed from different post-
Newtonian and post-Minkowskian cases. This allows us to
isolate the effects of HSchw, HFD, HSLO , and HSNLO + HFD,
as follows.

1. To isolate HSchw we compute the redshift difference zMink
Schw −

zMink
Kep . By zMink

Schw we mean that the star is followed using terms
inHstar up toHSchw and the photons are followed usingH null

up to HMink. The same naming convention applies to zMink
Kep

and to other expressions of this type below.
Figure 3 shows the redshift difference, calculated for three

orbits going from apocenter to apocenter. One orbit has
the parameters of S2; the two others have a = 2aS2 and
1
2aS2 with the other orbital parameters being the same. The
redshift difference increases till pericenter and then declines
somewhat, but not to its previous apocentric value, because
the relativistic orbit experiences prograde Schwarzschild
precession whereas the Keplerian orbit does not, and the
resulting phase change in the orbit gives an increasing
contribution to the redshift.

For S2 parameters, the maximum redshift contribution
of HSchw is found to be �7 km s−1. For the other two
stars, upon rescaling the redshift differences by (a/aS2)−3/2

and the orbital time also by (a/aS2)−3/2, the results can
be overlaid almost perfectly on those of the S2-like
star.

2. To isolate HFD we then compute the redshift difference
zMink

FD − zMink
Schw. For an S2-like orbit the signal is around

0.1 km s−1 at pericenter, and as Figure 4 shows, the signal
scales as a−2.

3. To isolate HSLO we compute z
SLO
Schw − zMink

Schw and illustrate
this difference in Figure 5. There is no precession-related
redshift effect involved, because the photon types being
compared refer to the same stellar orbits. The signal
scales as a−3/2 and for the S2-like orbit the maximum is
�2 km s−1.

We see that the Schwarzschild terms in the stellar orbit
and in the light path give comparable contributions to the
redshift. To detect the Schwarzschild effect, it is necessary
to take both into account.
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Figure 5. Redshift difference z
SLO
Schw − zMink

Schw showing the contribution of HSLO . The scheme follows Figure 3, the redshift difference being scaled again (a/aS2)−3/2.
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Figure 6. Redshift difference zFD
FD −z

SLO
FD showing the contribution of HSNLO +HFD. The scheme follows Figures 3–5, with the redshift difference scaled by (a/aS2)−5/2.

Here we have taken the spin as maximal, s = 1. This signal is exactly proportional to s.

4. Finally, we isolate HSNLO + HFD by computing zFD
FD −

z
SLO
FD . Figure 6 verifies the expected a−5/2 scaling and

shows that the maximum signal for S2 parameters is
∼10−2 km s−1. Thus, we see that the frame-dragging on
photons is much smaller than on stars. Similarly, HSNLO

makes a much smaller contribution than HFD. We expect
that the contribution of Htorq would be similarly small,
though we have not calculated it.

We see that in order to measure the leading-order frame-
dragging effect on Galactic-center stars, it is sufficient to
consider Schwarzschild photons.

Of course, the computation method for weak redshift signals
contains numerical errors, especially for higher-order effects
being evaluated at large distances from the black hole. The
numerical noise in our implementation drowns out the leading-
order Schwarzschild effect for scaled S2-like orbits with a ≈
3 × 108—at which point the pericenter redshift signal is
≈5 × 10−6 km s−1. Numerical noise would overwhelm the
frame-dragging signal for scaled S2-like orbits with at a ≈

1.2 × 105. This being an order of magnitude larger than aS2,
and so we are in good shape to calculate the frame-dragging
redshift contribution. For redshift signal contributions beyond
those of frame-dragging, the numerical noise in our Matlab
implementation of the algorithm is intolerable for aS2. Were
we calculating these effects for stars closer to the SBH, the
higher-order signals would be stronger, and therefore less prone
to round-off. In summary, for the known Galactic-center stars,
the numerical noise in calculating relativistic redshifts will
be well within the observational errors, even with the next
generation spectral instrumentation.

4. SUMMARY AND OUTLOOK

Some stars in orbit around the Galactic-center black hole
reach velocities of a few percent light at pericenter, and the
time-varying redshift of these stars during pericenter passage
has small but distinctive perturbations from general relativity.

The redshift is dominated by the line of sight velocity, which
for the star S2 reaches v ∼ 5 × 103 km s−1 at pericenter. The
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leading perturbations are from time dilation because (1) the star
is moving and (2) because it is in a potential well. Both of these
make O(β2) contributions to the redshift (where v is the stellar
velocity in light units) and are well understood (Zucker et al.
2006). In this paper, we have calculated additional perturbations
from general relativity, which are the following.

1. The weak-field Schwarzschild effect on the stellar
orbit, which contributes to redshift at O(β3). For S2 it is
�7 km s−1.4

2. The frame-dragging effect of black hole spin on the stellar
orbit, which perturbs the redshift at O(β4). For S2 it would
be ∼10−1 km s−1 for maximal spin.

3. The weak-field Schwarzschild effect on the light traveling
from the star to us, which gives a redshift perturbation at
O(β3). For S2 it is �2 km s−1.

4. Frame dragging plus next-order Schwarzschild perturbation
of the photon paths. These contribute at O(β5) to the
redshift, and we estimate these as ∼10−2 km s−1 for S2.

Of these, the first two are orbital effects and have been
considered in previous work (Kannan & Saha 2009; Preto &
Saha 2009). The last two are light-path effects, known about but
not previously computed in the context of Galactic-center stars.

Clearly, in order to measure the Schwarzschild effects via the
redshift, the effects of general relativity on both the stellar orbit
and the light path must be computed, as they are of the same
order. On the other hand, to leading order, frame dragging needs
to be considered only in the orbit and can be neglected in the
light path.

In order to test for the presence and form of the NLO and
NNLO terms in the metric, the calculated redshift curve must
be fitted to the spectral data via a range of parameters. These
include the orbital parameters and the black hole mass. In
keeping these parameters variable, we can expect a requirement
for spectroscopic accuracy less than the signal sizes themselves.
Bear in mind however, that this depends on the number of data
points. The inclusion of astrometric data to the fitting procedure
will help relax the accuracy bound.

Observationally, the Galactic-center stars are of course ob-
servable only in infrared. For the most massive stars, includ-
ing S2, the Brackett-γ line at 2.16 μm is the most prominent
available spectral feature, and has an intrinsic dispersion of
∼100 km s−1 (see, e.g., Martins et al. 2008). For low-mass
stars, the edges of the CO molecular bands (the so-called CO
band heads) are excellent sharp features for redshift measure-
ments.

The SINFONI spectrograph, an instrument at the VLT, has a
spectral resolution of 75 km s−1. Redshift errors are currently
estimated at 10 s of km s−1 (see Section 4.1 of Gillessen
et al. 2009) but expected to improve. Measurements by this
instrument during S2’s next pericenter passage in 2016 could
suffice to provide data from which the Schwarzschild signals
could be extracted.

Spectral measurements seeking the spin-dependent signals
are far beyond the capabilities of existing infrared spectrographs.

4 Note that these effects are not measurable separately, only the total redshift
is. Hence values like 7 km s−1 depend on the choice of reference orbit and
phase, and can change accordingly. Nevertheless, the stated numbers give an
idea of the observational precision required.

On the other hand, recent developments such as laser-comb
spectrographs (see, e.g., Steinmetz et al. 2008) suggest optimism
that the spectral resolutions of next-generation instruments will
prove adequate.

Meanwhile, there are some theoretical issues that require
further research.

1. Given a model of gravity which is metric, and an associ-
ated energy–momentum distribution, for which we have a
metric, we are able to calculate the general relativistic red-
shift as observed by the Earth. Should we wish to probe
the agreement of measured redshift contributions with a
model, an effective way of working backward needs to be
formulated. Given redshift curve data of sufficient resolu-
tion, methods for determining the model from such must be
developed.

2. The Kerr black hole metric is a vacuum solution to the
Einstein field equations. The assumption of a “clean” metric
is an oversimplification. An extended Newtonian mass
distribution in the galactic center is anticipated. Accreting
material, gas, and a possible accumulation of dark matter
in the center could play a significant role in the dynamics.
Such mass distributions need to be included in the metric.

3. The possibility of a non-Einsteinian black hole metric
should not be disregarded. Alternative theories of grav-
ity possess black hole solutions whose phenomenology
differs potentially already at low order (Will 1993) from
weak-field Einstein gravity. Suitable measurements, com-
bined with the concession of extended mass distributions
would allow for the identification of potentially reveal-
ing redshift contributions. Conclusive results of such stud-
ies would likely require spectral measurements with a
resolution beyond that offered by present-day generation
instruments.

We thank S. Gillessen and the referee for comments.
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Testing General Relativity with Galactic-Centre Stars

Raymond Angélil1 and Prasenjit Saha1

Abstract. The Galactic Centre S-stars orbiting the central supermassive
black hole reach velocities of a few percent of the speed of light. The GR-induced
perturbations to the redshift enter the dynamics via two distinct channels. The
post-Newtonian regime perturbs the orbit from the Keplerian (Zucker et al.,
2006, Kannan & Saha 2009), and the photons from the Minkowski (Angélil &
Saha 2010). The inclusion of gravitational time dilation at O

(
v2

)
marks the

first departure of the redshift from the line-of-sight velocities. The leading-order
Schwarzschild terms curve space, and enter at O

(
v3

)
. The classical Keplerian

phenomenology dominates the total redshift. Spectral measurements of suffi-
cient resolution will allow for the detection of these post-Newtonian effects. We
estimate the spectral resolution required to detect each of these effects by fitting
the redshift curve via the five Keplerian elements plus black hole mass to mock
data. We play with an exaggerated S2 orbit - one with a semi-major axis a frac-
tion of that of the real S2. This amplifies the relativistic effects, and allows clear
visual distinctions between the relativistic terms. We argue that spectral data
of S2 with a dispersion ∼ 10 km s−1 would allow for a clear detection of gravita-
tional redshift, and ∼ 1 km s−1 would suffice for leading-order space curvature
detection.

1. Introduction

The stars orbiting the supermassive black hole (M ≈ 4.4 · 106M�) within the
central arcsecond are on highly relativistic orbits. In comparison, the velocity
of a geosynchronous Earth satellite is vsatell ≈ 0.00005c. Mercury, whose orbital
Schwarzschild precession has been measured has vmerc ≈ 0.00016c . Binary pul-
sar systems manage to reach vbinary pulsar ∼ 0.003c, while the galactic centre
S-Stars boast vS2 ∼ 0.03c. This, due to their proximity to the black hole dur-
ing pericenter passage (down to ∼ 3000 gravitational radii), make this class of
stars the fastest resolvable ballistic objects known, and allow for the prospect of
detecting post-Newtonian effects.

The dynamics of the orbit and light trajectories provide an opportunity to
test the form of the metric, and in doing so, General Relativity. The Kerr metric
is the external solution to the Einstein Field Equations for a rotating body. The
geodesics of such a space-time exhibit some well-known features: gravitational
time dilation, prograde precession, lensing, and frame-dragging. Gravitational
time dilation and precession are orbital effects. The former due to a temporal
stretching, and the latter due to space curvature. Such a curvature also affects
photon trajectories — veering the trajectories away from those of straight lines.

1Institute for Theoretical Physics, University of Zürich,
Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
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Each of these effects contributes to the redshift of the Galactic-centre stars in a
distinct manner.

These features, although markedly distinct, are all due to the same metric.
The post-Newtonian formalism, valid provided r À 0, allows us to cleanly dis-
entangle these effects, and investigate the detection of each separately. Not only
are the stars on post-Keplerian orbits, but the photons must travel through
spacetime on nontrivial paths before arriving at Earth. This nontrivial path
through spacetime affects the time of arrival, and therefore the redshift.

2. Model

The star’s orbit can be described by the Hamiltonian (Angélil & Saha 2010)

Hstar = −p2t
2

∝ v1 No gravity

+
p2r
2

+
p2θ
2r2

+
p2φ

2r2 sin2 θ
− p2t

r
∝ v1, v2 Kepler + Time-dilation

−p2t
r2

− p2r
r

∝ v3 space curvature

+ frame dragging, torquing, ...
(1)

At leading order, the system is spatially invariant, and the star feels no
acceleration. At next-to-leading order, gravity debuts. Classically, the poten-
tial term is 1/r. GR however demands the modification to p2t /r, which results
in gravitational time-dilation ∝ v2, a consequence of the Einstein Equivalence
Principle. Spatially the problem has remained unchanged. However, because the
time-dilation term affects the photon arrival times, the redshift is affected. Space
curvature enters one order higher. This is the leading-order Schwarzschild term,
and causes the orbit to precess. Higher order effects, such as frame-dragging
and torquing, we choose not to delve into here.

The Hamiltonian governing photon paths, being null, contains a different
selection of pre-truncation terms.

H null = −p2t
2

+
p2r
2

+
p2θ
2r2

+
p2φ

2r2 sin2 θ
∝ v0 Minkowski

−p2t
r

− p2r
r

∝ v3 space curvature

+ frame dragging, torquing, ...

(2)

At leading order, the trajectories are straight lines. Lensing occurs at O
(
v3

)
via

the leading order Schwarzschild contribution. There is no contribution atO
(
v4

)
.

For photons, the frame-dragging term debuts at O
(
v5

)
along with higher-order

Schwarzschild terms, and spin-induced torquing terms. In this work, we consider
effects only up to O

(
v3

)
for both the null and timelike cases1.

1For a maximally spinning black hole, the frame-dragging photon signal on S2’s redshift at
pericenter is ∼ 10m s−1 — two orders of magnitude weaker than the Schwarzschild photon
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3. Calculating the Redshift

To calculate the redshift curve of the star, we integrate the star’s orbit using
timelike solutions to (1), and then, on chosen points along the star’s orbit, we
find the paths of those particular photons emitted by the star which hit the ob-
server (Figure 1). To do this, the initial angular momentum of the trajectories
(corresponding to null solutions of 2) is varied until the termination position of
the photon converges on the observer position. Once the trajectories of these
photons are known, the redshift may then be calculated directly from the defi-
nition:

z =
ta2 − ta1
τe2 − τe1

− 1, (3)

where τe1 and τe2 are the proper times of a pair of photons emitted at neigh-
bouring points on the star’s orbit, and ta1 and ta2 are their respective arrival
times.

4. Post-Newtonian Detection

The redshift curve of a galactic centre star is dependent on a handful of pa-
rameters. These include the Keplerian elements, the black hole mass, as well
as discrete parameters which toggle the post-Newtonian terms. We proceed as
follows. In order to put upper bounds on the spectral resolution required to
detect the post-Newtonian effects, we generate mock spectral data consisting of
200 data points with a chosen dispersion, using relativistic terms up to O

(
v3

)
for both the null and timelike metrics, and determine whether or not we are
able recover the parameter values by fitting with these effects turned off. For
illustrative purposes, we consider an exaggerated S2 orbit. For the semi-major
axis, we take a = aS2/100. In doing so, v = 10vS2 — the classical contribution
to the redshift is raised 10-fold. The redshift due to gravitational time dilation,
which enters the dynamics at O

(
v2

)
is increased 100-fold. The space curvature

redshift contribution, entering at O
(
v3

)
, is enhanced 1000-fold. Figure 2 shows

the results of the fitting procedure. The classical fit manages a χ2
red = 4.88, the

time dilation fit χ2
red = 2.68, and the space curvature fit χ2

red = 1.07. Hence, a
spectral dispersion of 103 km s−1 suffices for clear visual and numerical distinc-
tion of these relativistic effects. In undoing our exaggeration of the orbit, we
argue that a spectral dispersion of ∼ 10 km s−1 would allow for a clear detection
of gravitational redshift for the real S2, and ∼ 1 km s−1 would yield a test for
space curvature.

References
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signal. It is unlikely that the next generation of instruments will possess the capability to
probe such deeper, weaker terms. We feel morally obligated not to raise the heartbeat of the
observer reading this.
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Figure 1. Schematic illustration of the redshift calculation method. Each
photon shot by the star hits the observer. Each of the above cases yields four
points on the redshift curve. The first panel shows Minkowski photons, the
second space-curved photons, and the third frame-dragged photons.
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Figure 2. Our S2-like star has a = aS2/100. The mock redshift data in
the above examples is generated all in the same way: 200 data points are
distributed along the complete orbit with a dispersion of 103 km s−1, gravita-
tional time dilation and space curvature are all turned on. In the first panel,
we fit with gravitational time dilation turned on, and space curvature turned
off. For the second, we turn gravitational time dilation on, and for the third,
we further turn space curvature on. The mismatch between the fit and the
simulated data is discernable in the first two panels. Only in the last panel,
when all the effects are included in the fit, is a satisfactory fit with χ2

red ≈ 1
obtained.
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ABSTRACT

The S stars orbiting the Galactic center black hole reach speeds of up to a few percent the speed of light during
pericenter passage. This makes, for example, S2 at pericenter much more relativistic than known binary pulsars and
opens up new possibilities for testing general relativity. This paper develops a technique for fitting nearly Keplerian
orbits with perturbations from the Schwarzschild curvature, frame dragging, and the black hole spin-induced
quadrupole moment, to redshift measurements distributed along the orbit but concentrated around pericenter. Both
orbital and light-path effects are taken into account. It turns out that absolute calibration of rest-frame frequency
is not required. Hence, if pulsars on orbits similar to the S stars are discovered, the technique described here
can be applied without change, allowing the much greater accuracies of pulsar timing to be taken advantage of.
For example, pulse timing of 3 μs over 1 hr amounts to an effective redshift precision of 30 cm s−1, enough to
measure frame dragging and the quadrupole moment from an S2-like orbit, provided problems like the Newtonian
“foreground” due to other masses can be overcome. On the other hand, if stars with orbital periods of order of a
month are discovered, the same could be accomplished with stellar spectroscopy from the European Extremely
Large Telescope at the level of 1 km s−1.

Key words: Galaxy: nucleus – gravitation – stars: kinematics and dynamics

Online-only material: tar.gz file

1. INTRODUCTION

Tracing the orbits of the S stars in the Galactic center region
reveals a central mass of ∼4 × 106 M� (Ghez et al. 2008;
Gillessen et al. 2009b), presumably a supermassive black hole.
The roughly 20 known S stars are mostly main-sequence B
stars, and it is likely that they share their environment with
many fainter stars. Hence, discovery by the next generation of
telescopes of stars far closer to the black hole is anticipated.
The dynamics of the orbit and light trajectories provide an
opportunity to test hitherto unobserved predictions of general
relativity in the black hole neighborhood, and in doing so,
confirm or revise our understanding of the nature of gravity
(Gillessen et al. 2010). Meanwhile, searches for pulsars in the
Galactic center region are also underway (e.g., Macquart et al.
2010). If pulsars on orbits similar to S stars are discovered, their
time-of-arrival measurements may provide accuracies orders of
magnitude beyond those available from optical spectroscopy.

It is interesting to compare S stars with other relativistic
orbits. General relativistic perturbations of a nearly Keplerian
orbit typically scale as an inverse power of the classical
angular momentum

√
a(1 − e2). Thus, a simple measure of the

strength of relativistic effects in a nearly Keplerian orbit is the
dimensionless pericenter distance.3 Figure 1 plots pericenter
distance against orbital period for a sample of S stars and
binary pulsars together with Mercury and artificial satellites. At
present, binary pulsars are the leading laboratories for general
relativity. The principles are summarized in Taylor (1994).
Taylor’s Figure 11, depicting five intersecting curves, indicating
four distinct tests of general relativity, is especially memorable,
and descendants of this figure with newer data appear in recent
work (e.g., Figure 3 in Kramer & Wex 2009). So, it is remarkable
that the star S2 has a pericenter distance ∼3 × 103, an order

3 In this paper, the semimajor axis a and the pericenter distance a(1 − e) are
always expressed in units of GM/c2 and are therefore dimensionless.

of magnitude lower than the most relativistic binary-pulsar
systems, and 4 orders of magnitude lower than Mercury. This
suggests that Galactic center orbits may show relativistic effects
not measured in binary pulsars, such as frame dragging. On the
other hand, S2 has an orbital period of ∼15.9 yr versus 1 day
or less for some binary pulsars. Thus, for the known S stars
or pulsars on similar orbits, we cannot build up a relativistic
signal over many orbits. A different strategy is needed, based
on detailed observation of one or a few orbits, and paying
special attention to pericenter passage, when relativistic effects
are strongest.

Several different possibilities for observing relativistic effects
have been discussed in the literature. To see how these relate to
each other, let us consider the different physical effects involved
in observing a relativistic orbit over time. These are illustrated
in Figure 2. Shown schematically in this figure is a star on a
precessing orbit, which emits photons (pulses, wavecrests) at a
fixed frequency in proper time. These photons then take a curved
path to the observer. When they arrive, both their frequency and
their travel direction have been altered. What can the observer
detecting these photons infer about the metric? This observer
must take multiple physical processes into account.

1. Time dilation at the source is a consequence of the equiva-
lence principle and is the strongest relativistic perturbation.
Its measurability in the context of the Global Positioning
System (GPS) is well known (Ashby 2003). The manifes-
tation of time dilation in pulsar timing is known as the
Einstein time delay. For the S stars, a spectroscopic detec-
tion of time dilation is expected around pericenter passage
(Zucker et al. 2006).

2. Orbit perturbations are a test of space curvature, and at
higher order, of black hole spin.

(a) The leading-order precession of orbital periapse is well
measured in binary pulsars. (For a discussion of how
pulsar timing effects scale to the Galactic center region,
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Figure 1. Pericenter distance (in units of GM/c2) against orbital period for a
variety of systems. The known S stars, having smaller pericenter distances, are
more relativistic than known binary pulsars. But the long orbital periods of the S
stars render it infeasible to measure cumulative effects over many orbits. Hence,
other techniques must be devised. The pulsar examples are taken from Lorimer
(2008). For the S stars, the orbital elements in Gillessen et al. (2009b) have been
used. In this paper, we also treat fictitious stars that lie along the dashed line,
that is, having a range of semimajor axis a values but with the same eccentricity
and angular elements as S2.

see Pfahl & Loeb 2004.) Astrometric measurement of
precession in the orbit of S2 is considered feasible
with current instruments (Eisenhauer et al. 2009),
but the long orbital period and the likelihood of
Newtonian precession due to the distributed mass both
present serious difficulties. If stars much further in are
discovered, however, precession of orbital planes due
to higher-order spin and quadrupole effects become
accessible (Will 2008; Merritt et al. 2010).

(b) Orbital decay due to gravitational radiation is not
considered measurable because of the long timescales
and the extreme mass ratio between the star or pulsar
and the supermassive black hole.

(c) In contrast to the above secular effects, there are
also general-relativity-induced velocity perturbations,
which vary along the orbit (Kannan & Saha 2009; Preto
& Saha 2009). In binary pulsars, velocity perturba-
tions are not considered especially interesting and are
subsumed within Roemer delays. For Galactic center
stars, however, the situation is different. First, the ve-
locity perturbations are larger, and second, they are
concentrated around pericenter passage, thus offering
a better prospect for isolating relativistic perturbations
from Newtonian ones.

3. Light paths and travel times are affected by the black hole
mass, and again at higher order by spin.
(a) Strong deflection of starlight (Bozza & Mancini 2009)

or a pulsar beam (Wang et al. 2009a, 2009b) would be
a spectacular though rare event.

(b) Small perturbations of photon trajectories, too small
to measure astrometrically, can nevertheless produce
detectable changes in the light travel time. In the pulsar
literature, this is known as the Shapiro delay. The
analogous effect for S stars is a time-dependent redshift
contribution (Angélil & Saha 2010), which for a star-
like S2 is comparable to the velocity perturbations.

Hence, in the Galactic center, relativistic perturbations
on both orbits and light paths must be considered.

Later in this paper, we will group time dilation with the orbital
effects.

Motivated by the above considerations, in this paper we de-
velop a method to fit a relativistic model to observables. This
strategy (1) takes relativistic perturbations on both the orbits
and the light into account, (2) treats stellar spectroscopy and
pulse timing in a unified way, and (3) is well suited to ana-
lyzing data obtained from a single orbital period or even less.
We include the effects of time dilation, space curvature, frame
dragging, and torquing-like effects induced by the quadrupole
moment from the black hole spin. Some further issues
remain, most importantly, how to include Newtonian perturba-
tions (from mass other than the black hole’s) in the fit—hence
the “toward” in the title.

The observable we consider is the apparent frequency ν. As
remarked above, this can refer to spectral lines or pulses. The
source frequency ν0 is in principle known for stars, but unknown
for pulsars. Note that

c ln(ν0/ν) = c ln(1 + z) � cz, (1)

where z is redshift in the usual definition. For this paper,
however, we will use “redshift” to mean c ln(ν0/ν). The possibly
unknown source frequency now appears as a harmless additive
constant in the redshift. For the S stars, the current spectroscopic
accuracy is ≈10 km s−1 under optimal conditions (Gillessen
et al. 2009b). If a pulsar on a similar orbit is discovered, the
accuracy would likely be much higher. Taking, as an example,
a 1 hr observation with pulses timed to 3 μs (cf. Janssen et al.
2010) implies an accuracy of one part in 109, equivalent to a
redshift accuracy of 30 cm s−1. The same level of accuracy is
not inconceivable from spectroscopy of S stars, since planet
searches routinely achieve Δv < 1 m s−1 (e.g., Lovis et al.
2006), but would require some technical breakthroughs to
achieve for faint infrared sources like the S stars.

For a given orbit and redshift accuracy, the principal quantities
we will calculate are the signal-to-noise ratio (S/N) for differ-
ent relativistic effects. For each of four relativistic effects—time
dilation, space curvature, frame dragging, and quadrupole mo-
ment effects—we will present the results in two ways: (1) the
redshift accuracy needed to reach some S/N for a given orbit
and (2) the orbital parameters needed to reach some S/N for a
given redshift accuracy.

2. MODEL

The main calculations in this paper will assume that the
trajectories of both S stars (or pulsars) and photons are geodesic
in a pure Kerr metric. Naturally, geodesics of the former are
timelike, and of the latter, null. Even if Einstein gravity is correct,
the pure Kerr metric is naturally an approximation because this
solution to the field equations neglects all mass in the vicinity
of the black hole (more on this later), and the mass of the star
itself. In general relativity, geodesic motion is fully described
by the super Hamiltonian

H = 1
2 gμνpμpν, (2)

with H = 0 for null geodesics.
Rather than carry out all computations with the Hamiltonian

resulting from the full Kerr metric, it is useful to consider two
different approximations for the cases of orbits and light paths.



No. 2, 2010 RELATIVISTIC ORBIT FITTING OF GALACTIC CENTER STARS AND PULSARS 1305

−50

0

50

100

150

200

250

−100−50050100150200250

0

50

100

150

200

250

300

−50

0

50

100

150

200

250

−100−50050100150200250

0

50

100

150

200

250

300

−50

0

50

100

150

200

250

−100−50050100150200250

0

50

100

150

200

250

300

−50

0

50

100

150

200

250

−100−50050100150200250

0

50

100

150

200

250

300

Figure 2. Depiction of the system we deal with, shown at four slices of coordinate time. The curve ending in a star symbol traces a stellar orbit, starting from apocenter,
through its second pericenter passage. The star emits photons in all directions at equal intervals of proper time. Dots show photons which will reach the observer
(marked “×”). Note that the dots represent a sequence of photons emitted at different places, hence joining the dots does not represent the path of any particular
photon. Time dilation and Schwarzschild perturbations are included in this example, but not frame dragging or quadrupole. This means that the star’s orbit precesses,
and the photons are lensed. In order to make the relativistic effects visually discernible, the star has a very low value of a = 100. Such a star may, however, yet be
discoverable by the E-ELT (Lyubenova & Kissler-Patig 2009). Also, the observer has been placed at an unrealistically close distance of 300.

These we will call Hstar and H null. (Word labels in subscripts
indicate orbits, in superscripts, light paths.) We express these
approximate Hamiltonians perturbatively as

Hstar = Hstatic + ε2 HKep + ε4 HSchw + ε5 HFD + ε6 Hq, (3)

and

H null = H Mink + ε4 H Schw + ε6
(
H FD + H q

)
, (4)

where the meanings of the various component Hamiltonians
will be explained shortly. Note that ε is just a label to indicate
orders: if εn appears, the term is of order vn (where v is the
stellar velocity in light units), but numerically ε = 1. The series
in Equations (3) and (4) actually consist of the same terms, but
because Hstar is to be applied only to trajectories that are strongly
timelike, and H null only to compute null geodesics, the orders
of same terms are often different.

Expressions for all the Hamiltonian terms are derived per-
turbatively from the Kerr metric, using the basic method ex-
plained in Angélil & Saha (2010). We will not repeat the
details here, but simply list the terms and their physical
meanings.

First we consider the orbit (Equation (3)).

1. To leading order, the star feels no gravity and the clock
simply ticks:

Hstatic = −p2
t

2
. (5)

2. At next-to-leading order, gravity first appears, with

HKep = p2
r

2
+

p2
θ

2r2
+

p2
φ

2r2 sin2 θ
− p2

t

r
, (6)

which is the classical Hamiltonian modified by 1/r →
p2

t /r . This modification leaves the problem spatially un-
changed, but introduces a temporal stretching causing a
gravitational time dilation. This is originally a consequence
of the Einstein Equivalence Principle, and affects the red-
shift at O(v2).

3. Appearing next are the leading-order Schwarzschild con-
tributions,

HSchw = −2p2
t

r2
− p2

r

r
, (7)

of which the first term effects a further time dilation, and
the second curves space, leading to orbital precession.
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4. Next, the first spin term emerges with

HFD = −2sptpφ

r3
, (8)

producing frame dragging, an r-dependent precession
around the spin axis. Here, s is the spin parameter, which
points in the θ = 0 or +z direction. Maximal spin is s = 1.

5. The last set of orbital terms we will consider are

Hq = s2

(
sin2 θp2

r

2r2
− p2

φ

2r4 sin2 θ
+

cos2 θp2
t

r3
− cos2 θp2

θ

2r4

)
,

(9)
which are the leading-order quadrupole moment terms.
These result in the orbit being torqued toward the spin
plane as well as other less intuitive effects.

We then consider light paths (Equation (4)).

1. At leading order, we have

H Mink = −p2
t

2
+

p2
r

2
+

p2
θ

2r2
+

p2
φ

2r2 sin2 θ
, (10)

which is to say, the spacetime is Minkowski and the photon
trajectories are straight lines.

2. The leading-order Schwarzschild contribution

H Schw = −p2
t

r
− p2

r

r
(11)

(which, notice, is not identical to HSchw) introduces lensing
and time delays.

3. The frame-dragging term for photons

H FD = −2sptpφ

r3
(12)

debuts at one order higher than HFD. Frame dragging lenses
photons around the black hole in a twisted fashion. A φ-
dependent time dilation also occurs.

4. Finally, we consider higher-order Schwarzschild terms and
quadrupole moment terms

H q = −2p2
t

r2
+

s2 sin2 θp2
r

2r2
− s2 cos2 θp2

θ

2r4
− s2p2

φ

2r4 sin2 θ
,

(13)
which, as before, produce a torque toward the spin plane
and as well as some more subtle effects.

The well-known separability properties of the Kerr metric
(cf. Chandrasekhar 1983, p. 663) provide solutions up to quadra-
tures, but not explicit solutions. Analytic solutions for geodesics
and null geodesics are available for various special cases, for
example, for the leading-order Schwarzschild case (D’Orazio &
Saha 2010), but the present work uses the numerical integration
of Hamilton’s equations.

3. CALCULATING REDSHIFTS

Given a set of orbital parameters for the star, we calculate a
redshift curve, meaning ln (ν0/ν) against observer time or pulse
arrival time, by the following method.

First, the orbit is calculated by numerically solving Hamil-
ton’s equations for Hstar (Equation (3)). If desired, particular
orbital relativistic effects can be isolated by omitting other rela-
tivistic terms from Hstar. The independent variable is, of course,

Table 1
Relativistic Effects Considered in this Paper, and How They Scale

with the Orbital Period

Effect Orbit Light Path

Classical P −1/3

Time dilation P −2/3

Schwarzschild P −1 P −1

Frame dragging P −4/3 P −5/3

Quadrupole P −5/3 P −5/3

not time but the affine parameter (say λ). Along this orbit, from
pairs of points separated by Δλ, photons are sent to the ob-
server. The difference in proper time between the emission of
two photons is

Δτ = Δλ√−2 Hstar
. (14)

The photons themselves travel along paths determined by
H null (Equation (4)) with the additional condition H null = 0.
Again, one is free to isolate particular relativistic effects on the
photons by discarding terms from H null. If Δt is the difference
in the photons’ times of arrival at the observer, then

ν0

ν
= Δt

Δτ
. (15)

This calculation is carried out along the orbital path. Some
snapshots of this procedure are illustrated in Figure 2.

Now, photons are emitted from the star in all directions, but
we need to find exactly those photons which reach the observer.
Solving this boundary value problem is the computationally
intensive part. Our algorithm for doing so is explained in
Angélil & Saha (2010). In stronger fields, the redshift curve
takes longer to compute than in weaker ones, both because the
orbit integration needs smaller step sizes over more relativistic
regions, and because the boundary value problem requires more
iterations before satisfactory convergence is reached.

The observable redshift is of course a combination of all the
relativistic effects atop the classical redshift. One can, however,
estimate the strengths of each effect in isolation by toggling each
term in Equations (3) and (4) on and off, and then taking the
difference in redshift. Figures 3 and 4 show relativistic redshift
contributions measured in this way. These orbits refer to the
pericenters of a range of orbits, varying in a but with e and
the other orbital parameters fixed at the values of S2. These
effects have simple scalings with the orbital period, readily
deduced from the scaling properties of the Hamiltonians, and
summarized in Table 1. Numerical results in Angélil & Saha
(2010) verify that such scalings apply not only at pericenter but
all along the orbit.

The extended mass distribution in the Galactic center region,
due to all the other stars, stellar remnants, and dark matter
particles that are present, introduces Newtonian perturbations.
The distribution and normalization of this mass are poorly
constrained on the scales of interest (Schödel et al. 2009),
although some upper limits exist (Gillessen et al. 2009a) and
some numerical experiments have been done (Merritt et al.
2010). Assuming spherical symmetry for this distributed mass,
models of the form

ρ (r) ∝ r−γ (16)

are sometimes adopted. Such a model ignores the torques due to
a nonspherical or discrete mass distribution, and the only change
it implies in the orbital dynamics is an additional (prograde)
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Figure 3. Redshift contributions of different orbital effects. Shown here are
the contributions of each term in Equation (3) at pericenter, with the orbital
period being varied and the other orbital parameters fixed at the S2 values. The
pericenter distance varies from 3600 (approximately the value for S2) down to 6.
Note that for the last two signals—the frame dragging and the quadrupole—we
have taken the black hole spin to be maximal and to point perpendicular to
the line of sight. The signal scalings are listed in Table 1. The curves begin
to intersect as we move toward the strong field regime—attributable to the
breakdown in our perturbative approximation for small r.

Figure 4. Same as Figure 3, but for photon propagation delays (Equation (4)).
The Schwarzschild propagation signal is for the most part slightly smaller than
the Schwarzschild orbital signal, and scales in the same way. The frame-dragging
propagation signal is considerably smaller than the corresponding orbital signal,
and scales like zFD ∝ P −5/3, as opposed to zFD ∝ P −4/3. The frame-dragging
signal remains approximately an order of magnitude weaker on the photons than
on the star. This suggests that in attempting to measure the spin of the black hole
in the post-Newtonian regime, its manifestation on the orbit is what matters.
Note, however, that this is not the case for the Schwarzschild effects—for which
neither the photon nor orbit perturbations may be neglected.

pericenter advance. Figure 5 compares the orbital and photon
signal strengths for each effect, including an extended mass
distribution of the type (16). Note, however, that in the analysis
which follows, we do not attempt to include the effects of the
extended mass distribution.

4. FITTING

The computational demands for the present work are far
greater than the calculations of a few redshift curves for given

Figure 5. Relativistic redshift effects with orbital and light-path contributions
summed. Two estimates for the signal due to the extended mass distribution are
also shown, using the crude model (16) normalized so that the circular velocity
at the r = 105 GMBH/c2 (or ∼ 0.1 pc) is ∼100 km s−1 (cf. Gillessen et al.
2009b). The flat and sloping dashed curves correspond to γ = 2.5 and 1.5,
respectively.

parameters (as in Angélil & Saha 2010), because fitting redshift
curves in a multidimensional parameter space requires evalua-
tions of up to tens of thousands of such curves. To this end, par-
allel functionality was added to the implementation. The work is
distributed evenly among the available processors. A workload
is the charge of calculating the redshift from a single position on
the star’s orbit, i.e., a single evaluation of Equation (15), calling
for the finding of two photons traveling from star to observer.
The program is available as an online supplement.

4.1. The Parameters

The redshift curve of an S star or pulsar depends on eight
essential parameters, but there can be any number of additional
parameters for secondary effects. In this paper, we consider nine
parameters in all as follows.

1. The black hole mass MBH sets the overall timescale, and
accordingly we express it as time. Changing MBH simply
stretches or shrinks the redshift curve in the horizontal
direction.

2. The intrinsic frequency ν0 for pulsars is the pulse frequency
in proper time, whereas for spectroscopy, it has the inter-
pretation of absolute calibration. Altering ν0 simply shifts
the redshift curve vertically.

3. Then there are the Keplerian elements, referring to the in-
stantaneous pure Keplerian orbit with the initial coordinates
and momenta. Our orbit integrations all start at apocenter.

(a) The semimajor axis a (or equivalently the period P =
2πa3/2MBH) is the single most important parameter
dictating the strength of the relativistic signals.

(b) The eccentricity e sets how strongly peaked the redshift
curve is at pericenter.

(c) The argument of pericenter ω sets the level of asym-
metry of the redshift curve.

(d) The orbital inclination I changes the amplitude of the
redshift. Classically, the inclination entering the red-
shift depends only on MBH sin3 I (on M3

BH/M2
total sin3 I

for finite mass ratio). In relativity, the degeneracy is
broken, because time dilation is independent of I.
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Figure 6. Signal-to-noise ratios (as defined by Equation (17)) for different
relativistic effects in the orbit of S2 as a function of redshift accuracy. Each point
on this figure corresponds to a simulated data set of 200 redshifts, distributed
over the orbit but with the highest density around pericenter.

(e) The epoch ε0 basically the zero of the observer’s clock.

The longitude of the ascending node Ω does not appear,
because in our chosen coordinate system, Ω rotates the
whole system about the line of sight, which has no effect
on the redshift. Formally, we simply fix Ω = 0.

4. For the pulsar case, we include a simple spin-down model
with a constant spin-down rate ν0 → ν0 − ν̇ (ta). Here, ν̇ is
an additional parameter.

We take the black hole spin as maximal, and as pointing
perpendicular to the line of sight. Proper motion of the black
hole is not considered.

To fit, we use a quasi-Newton limited memory Broyden–
Fletcher–Goldfarb–Shanno optimization routine with bounds
(Zhu et al. 1997; Byrd et al. 1994).

4.2. Signal to Noise

With an orbit fitting algorithm in hand, we now need to
quantify the notion of detectability of particular relativistic
effects. One way would be to attach a coefficient to each term
in the relativistic Hamiltonians and then see how accurately that
coefficient can be recovered. For this paper, however, we take
a simpler approach. Since, for now, we only aim to identify
which effects and which regimes are promising, we will simply
attempt to estimate the threshold for detecting the presence of
each term in Hamiltonians (3) and (4). Accordingly, we proceed
as follows.

1. For some chosen parameters, we generate a redshift curve
including all Hamiltonian terms up to some O(εn). These
redshift curves are sampled at 200 points with dense
sampling near pericenter.

2. We add Gaussian noise to the redshifts at some chosen level.
3. We then fit the parameters with a redshift curve lacking a

particular Hamiltonian contribution. If the noise level is too
high, a reduced χ2 � 1 will be obtained, otherwise χ2

red
will be higher. We define

S/N ≡
√

χ2
red (17)

as the signal-to-noise ratio.

Table 2
Summary of the Observational Thresholds at which Different Relativistic

Effects are Exposed, Assuming a Source of Negligible Mass in a
Pure Kerr Spacetime

Effect Required Redshift Rccuracy Required Orbital Period (yr)
for S2 for Given Redshift Accuracy

10 km s−1 1 km s−1 30 cm s−1

Time dilation ∼60 km s−1 ∼50 �PS2 �PS2

Schwarzschild ∼3 km s−1 ∼13 ∼30 �PS2

Frame dragging ∼10 m s−1 ∼0.5 ∼0.8 >PS2

Quadrupole ∼50 cm s−1 ∼0.04 ∼0.1 ∼PS2

Naturally, it is necessary to check that a large χ2
red is not the

result of some algorithmic problem, by verifying that a good fit
is obtained if the Hamiltonian term in question is consistently
included.

4.3. Redshift-accuracy Demands for S2

Figure 6 shows the S/N of time dilation, space curvature,
frame dragging, and quadrupole terms, all as a function of
redshift accuracy, assuming the orbit of S2. Time dilation is
well above the current spectroscopic threshold of ≈10 km s−1.
Space curvature is somewhat below, while frame dragging and
quadrupole are far below.

The detectability thresholds are summarized in the first part
of Table 2.

4.4. Orbit-size Demands for Given Redshift Accuracy

In Figures 7, 8, and 9, the redshift accuracy is set to 10 km s−1,
1 km s−1, and 30 cm s−1, respectively, while the orbital period
varies along the horizontal axis.

Table 2 summarizes the detectability thresholds.

5. SUMMARY AND OUTLOOK

This paper addresses the problem shown schematically in
Figure 2, which is to infer orbital parameters and detect
relativistic effects from redshifts or pulsar timings along an
orbit. The specific observable of interest is the ratio of rest-
frame to observed frequency ν0/ν and how it varies along an
orbit, especially around pericenter. It is not necessary to measure
ν0 separately; it can be treated as a parameter to be inferred. As a
result, spectroscopic redshifts and pulsar timings can be treated
in a unified way. We argue that redshift variation over one or
a few orbits, with special attention given to pericenter passage,
provides a possible route to testing relativity using Galactic
center stars, or (if discovered) pulsars on similar orbits. There
are two reasons why a different strategy is called for here than
in the binary pulsar case. First, pericenter speeds of S stars are
typically much higher than those of binary pulsars, and second,
the orbital periods are too long for cumulative effects to build
up.

The observable redshift contains several different relativistic
contributions affecting the orbit of the star or pulsar and the
light traveling to the observer. For calculations, we use a four-
dimensional perturbative Hamiltonian formulation derived from
the Kerr metric. Each relativistic effect appears conveniently
as a Hamiltonian term that can be toggled on and off to
examine its import. Computation of redshift curves using this
Hamiltonian approach was demonstrated in a previous paper
(Angélil & Saha 2010). In the present paper, we have developed
a pipeline for solving the inverse problem of inferring the
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Figure 7. Similar to Figure 6, except that the redshift accuracy is fixed at
10 km s−1 and the orbits vary, being scaled-down and speeded-up versions of
the orbit S2. For large S/N, these curves scale with the powers in Table 1.
Current instrumentation, operating under optimum conditions, should manage
an accuracy of 10 km s−1 indicating that gravitational time dilation should be
able to be detected on some of the currently known S stars.

Figure 8. Same as Figure 7, but for a redshift accuracy of 1 km s−1—matching
the capabilities of the E-ELT (Lyubenova & Kissler-Patig 2009).

orbital parameters from a redshift curve. We then compute
the redshift resolution needed to distinguish between redshift
curves with and without each relativistic perturbation included,
thus simulating the analysis of future observations. The redshift
resolution needed to uncover each effect is a few times finer
than the maximum contribution of that effect.

In our treatment, we have assumed that frequency data are the
only observables at hand. The prospects for detection would be
improved if astrometric information were included in the fitting
procedure. Information provided by astrometry is particularly
potent in constraining the angular Keplerian elements, and
would alleviate the burden placed on spectroscopy or pulse
timing.

A further way in which the detection prospects could be
improved would be to obtain data from multiple orbits. The
analysis of frequency data from stars or pulsars with periods
<1 yr would not only benefit from the steep period dependence

Figure 9. Same as Figures 7 and 8, but for a redshift accuracy of 30 cm s−1.
Pulse timing accuracies at this level are already available, known pulsars orbiting
the black hole on suitably short orbits, however, are not.

of the relativistic effects, but would also boost our chances of
resolving cumulative effects. Precession effects are naturally of
this type.

Figure 6 illustrates the redshift accuracies required for S2.
With current instrumentation, capable of ∼10 km s−1 accura-
cies, detecting time dilation appears comfortably feasible. De-
tecting space curvature appears feasible with a modest improve-
ment in redshift resolution. On the other hand, the discovery of
a pulsar on an orbit comparable to S2 could push the effective
redshift accuracy to <1 m s−1 and, in principle, bring frame
dragging and even quadrupole effects within reach, as shown in
Figure 9.

This paper, however, assumes a source of negligible mass in
pure Kerr spacetime. The finite mass of S2 (being < 10−5MBH)
would perturb the redshift by a similar factor via its effect
on the motion of the supermassive black hole. This would
be much smaller than the space-curvature effect, but more
than the frame-dragging contribution. A potentially much more
serious problem, however, is the Newtonian perturbations due
to other mass in the Galactic center region. This Newtonian
“foreground” is not necessarily fatal—the very specific time-
dependence of the relativistic effects may enable them to be
extracted from under a larger Newtonian perturbation (Merritt
et al. 2010)—but further research is needed to assess this.

If sources inward of S2 are discovered—something we may
hope for from the European Extra Large Telescope (E-ELT)
and the Square Kilometer Array (SKA)—the prospects for
relativity improve. Pfahl & Loeb (2004) argue that there may
be 100 pulsars with orbital periods less than 10 yr, although
the number may be much smaller (e.g., Merritt 2009). A large
fraction of these are expected to be found by the SKA. Not
only do the relativistic effects get stronger as we move closer
to the black hole, but the Newtonian perturbations are likely to
weaken. Figures 7 and 8 show the orbital periods at which one
would need to find stars or pulsars, given redshift accuracies of
10 km s−1 and 1 km s−1, respectively. If stars with a period of
less than one year are discovered, the prospects become very
exciting indeed.

We thank Antoine Klein and Daniel D’Orazio for discussion
and comments. D.M. was supported by grants AST-0807910
(NSF) and NNX07AH15G (NASA).
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Using wavelets to identify relativistic vs. stochastic

newtonian perturbations to S star orbits.

Raymond Angélil & Prasenjit Saha

August 18, 2011

1 Introduction

The galactic center S stars are the most relativistic ballistic objects yet observed. The strong
gravitational field offers the opportunity to infer the metric by observing S Star redshift curves.
There are expected to be thousands of solar masses worth of stars and black holes orbiting the
central supermassive black hole. Of these, we see but a small handful. The gravitational newto-
nian perturbations from these on an observed redshift curve may well be significant in clouding
relativistic perturbations. In this text we focus on picking up the leading-order relativistic
space-time curvature perturbations. The extended mass perturbations however are expected to
influence the redshift curve in markedly different ways. Relativistic contributions to the redshift
curve are most significant at pericenter, while such a clear dependence is not expected for the
newtonian perturbations.

2 Perturbations from a Keplerian line-of-sight redshift

To leading order, the redshift is completely classical - the line-of-sight velocity of a star on
a Keplerian orbit. Because the field in the S-Star regime is always weak, in our numerical
experiments, this contribution always dominates. There are two classes of perturbations to this,
namely, those from relativistic effects, and those from classical perturbations due to the extended
mass distribution.

• Relativistic perturbations Perturbations to the redshift from relativity enter the system in
two ways. Either via the star orbit, or via the photon trajectories. In Einstein gravity, in
the weak-field limit, the exterior stationary metric reads

ds2 = −
(

1(○,I) − 2M

r

(一,II)
)

dt2 +

(
1(一,I) +

2M

r

(二,II)

+O
(

2M

r2

)(三,III)
)

dx2, (1)

where the superscripts denote the order at which they enter the dynamics. Chinese nu-
merals for the star dynamics, and roman for photon trajectories.

– The effect of the perturbation on the star metric from Newtonian, enters the metric as
an additional space-curvature and induces a prograde precession, marginally increasing
the velocities. This effect scales like z ∼ P−1.1 This manifests in the redshift curve
as a doppler perturbation. The orbital precession is cumulative, and is therefore most
easily detected over multiple orbits.

1This precession has been observed on Mercury’s orbit and is in agreement with relativity.
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Figure 1: Classical redshift curve over one orbit, no perturbers

– The perturbation for photons from Minkowski paths curves the space-time in the
vicinity of the black hole, lensing the photons, and further increasing the redshift.
This contribution to the redshift curve also scales like P−1.

• Classical Perturbations The perturbations on the redshift curve from the extended mass
distribution are purely classical, and at this point do not perturb the central black hole
itself. These perturbers are on Keplerian orbits. The perturbers perturb the orbit which
we observe, and on long enough timescales, induce a prograde precession.

A redshift curve of a galactic center star is generated using the following ingredients.

1. Orbital parameters semi-major axis a, eccentricity e, mean anomaly ω, inclination I, and
epoch τ0. The choices for ω and I implicitly set the position of the observer.

2. Black hole mass M .

3. Perturbers The number of perturbers, their total mass as a fraction of the supermassive
black hole mass, and their distribution.

4. Relativistic effects The metric terms which induce relativistic perturbations to orbits and
photons can be toggled. In what follows, when we refer to relativistic effects being on or
off, they are either on for both orbits and photon trajectories, or off for both.

In this text, as an example, we consider a redshift curve of a galactic center S Star, and
see what the perturbation types do to the wavelet transformation. The star we choose has a
semi-major axis a = 10000 in gravitational radii (three times less than that of the the galactic
center star S-2), and an eccentricity e = 0.9. When we include the effects of the perturbing
stars, we include 200 in total, with a total mass 1% of the supermassive black hole mass. So
far, we have chosen an extremely simple distribution - uniformly random semi-major axes over
the range 0 − 20000, eccentricities uniformly distributed 0.0 − 0.8, and uniformly random orbit
orientations.

Figure 1 shows this star’s classical redshift curve over one orbit. Here, there are no perturbers,
and the relativistic effects are turned off. Let’s call this zKepl. We recalculate the redshift curve
twice. First, with the perturbers on and relativity off (zPert), and second, with perturbers off,

2
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Figure 2: The left panel shows extended mass redshift signal before and after optimizing the
area under the curve by shifting epochs. The right panel does the same, albeit for relativistic
perturbations.

and relativity on (zGR). From each of these curves we subtract the previously-calculated classical
redshift, and are left with the blue curves in Figure 2. These are the signal strengths. Now both
recalculated redshift curves have precessed with with respect to the original ones. This means
that at a specific time at which the difference is taken, the two orbits are phase-shifted with
respect to one another. To minimize this artificial effect as much as possible, we find the relative
epoch such that the difference is minimal. The black curves in Figure 2. show the signal sizes
after optimization.

3 Wavelets

Unlike a Fourier transformation, in which signals are represented as a sum of sinusoidal functions,
each localized in frequency only, the wavelet transformation preserves frequency and localization.
Relativistic perturbations, and perturbations due to the extended mass affect the dynamics in
different ways, at different frequencies and different localizations. We would like to design a pro-
cedure which removes extended-mass perturbations. Because redshift curves over a single orbit
have no periodicity, and because relativistic perturbations are most prevalent around pericenter,
wavelets, preserving frequency and location information are a natural choice for designing a filter.
Because relativistic effects are most pronounced around pericenter, we can expect high-frequency
coefficients, localized around pericenter passage, to be of greatest value in retaining information
from relativistic effects.
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3.1 Structure of the wavelet transformation

The n-th frequency mode of the wavelet transformation contains contains 2n−1 coefficients. (Save
for the zeroth, or constant mode, which has no localization.) Each coefficient thereof corresponds
to a different localization.

n Cn,m

0 C0,1

1 C1,1

2 C2,1, C2,2

3 C3,1, C3,2, C3,3, C3,4

4 C4,1, . . . , C4,8

5 C5,1, . . . , C5,16

Table 1: Wavelet transformation coefficient structure.

4 Redshift curves and wavelets

We have three redshift curves. One with neither perturbation type turned on (zKepl), one with
perturbation from the extended mass distribution (zPert), and the third with perturbations from
relativity (zGR). We take the wavelet transformation W of each curve. Now we do the following.
For each frequency mode, we take the inverse transformation of the coefficients in that mode,
while keeping the others zero. The import that the nth-mode coefficients on the total redshift
curve is Fn (z) ≡W−1 (W (z))n. Figure 4. plots Fn (zPert)− Fn (zNewt) in the first column, and
Fn (zGR)− Fn (zNewt) down the second, for n = 1 . . . 8.

We compute the associated power spectra (the sum of the square of the coefficients for each
frequency mode), P [W (zKepl)], P [W (zPert)] and P [W (zGR)]. The differences P [W (zPert)] −
P [W (zNewt)] and P [W (zGR)]−[W (zNewt)] are shown in panels 1 and 2 of Figure 5. respectively.
The power spectra differences show us the worth of coefficients at a particular frequency insofar
as they deviate from the classical, perturberless case. Our experiments show that relativistic
signals have more power at high frequency modes than extended-mass perturbations at the same
mode. This is because the eccentricity forces the relativity to ‘happen’ over a shorter timescale
(higher frequency), while extended-mass signals are more noise-like - uniform over the orbit
regardless of the eccentricity of the observed redshift curve.

5 Building a filter

If we wish to isolate certain frequencies over a specific locality in a redshift curve, we can choose
the corresponding grouping of coefficients, and use them as a filter. Figure 6. shows the locality
relationship a redshift curve, and the coefficients of its wavelet transformation.
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Figure 3: Wavelet structure. Each shows the inverse transformation of a single coefficient,
revealing the shape of the basis function. Each panel shows one mode higher than the previous.
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Figure 4: For the first 8 modes, we plot Fn (zPert) − Fn (zNewt) down the left, and Fn (zGR) −
Fn (zNewt) down the right. The relativistic signals come out at higher frequencies more than the
extended-mass ones do.
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Figure 5: The left panel shows the difference P [W (zPert)] − P [W (zNewt)], and the right
P [W (zGR)] − [W (zNewt)]. For this set of Keplerian elements, relativistic signals on the red-
shift have more power at high frequencies in comparison to the newtonian perturbations.
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Figure 6: This schematic helps understand the structure of the wavelet transformation, and
highlights its locality-preserving property. The upper panel shows a redshift curve with a = 5000
(P ∼ 1.2 years), and e = 0.9. The epoch is such that pericenter occurs in the middle. The lower
panel shows the structure of the wavelet transform. Each mark, regardless of colour, represents
a coefficient. Their positions on the graph show what frequency they corresponds to, and what
localization. The redshift curve has two arbitrarily chosen vertical red lines. Now we want
to know which wavelet coefficients contain information between those red lines. By ‘contain
information’, I mean that the inverse wavelet transform of these coefficients is non-zero over the
region. Wavelet coefficients that are blue contain no information on what happens over this
region. Magenta coefficients contain information on both what happens inside and outside the
region (an overlap). Red coefficients contain information only on what happens within the region.
Understanding the relationship between groups of coefficients and the extent to which they bear
information on different parts of the redshift curve will be important in designing filters.
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